PROFORMA FOR PREPARATION OF ANNUAL REPORT (April-2017-March-2018)

APR SUMMARY

1. Training Programmes

Clientele	No. of Courses	Male	Female	Total participants
Farmers & farm women	73	1761	467	2228
Rural youths	11	115	844	959
Extension functionaries	12	164	308	472
Sponsored Training	7	165	27	192
Vocational Training	5	35	58	93
Total	108	2240	1704	3944

2. Frontline demonstrations

Enterprise	No. of Farmers	Area(ha)	Units/Animals
Oilseeds	175	140.0	
Pulses	235	144.0	
Cereals	30	12.0	
Vegetables	10	4.0	
Other crops	40	16.0	
Total	490	316	
Livestock & Fisheries	39		124
Other enterprises	45	6	45
Total	84	6	169
Grand Total	574	322	169

3. Technology Assessment & Refinement

Category	No. of Technology Assessed & Refined	No. of Trials	No. of Farmers
Technology Assessed			
Crops	12	71	71
Livestock	4	30	30
Various enterprises	3	5	65
Total	19	106	106
Technology Refined			
Crops			
Livestock			
Various enterprises			
Total			
Grand Total	19	106	106

4. Extension Programmes

Category	No. of Programmes	Total Participants
Extension activities	133	9481
Other extension activities	15	627
Total	148	10108

5. Mobile Advisory Services

Name of	Massaga Tura	Type of Messages						
KVK	Message Type	Crop	Livestock	Weather	Marke- ting	Aware- ness	Other Enterprise	Total
	Text only	33	2	20				
	Voice only							
	Voice & Text both							
	Total Messages	33	2	20				55
	Total farmers Benefitted	2739	1565	416				4720

6. Seed & Planting Material Production

	Quintal/Number	Value Rs.
Seed (q)	1284.75	76,43,030-00
Planting material (No.)	1.2lakh	24,030-00
Bio-Products (kg)	1571	1,23,150-00
Livestock Production (No.)	1960	11,76,000
Fishery production (No.)	5142	6,06,885-00

7. Soil, water & plant Analysis

	Samples	No. of Beneficiaries	Value Rs.
Soil	1346	1255	164900
Water	36	24	3600
Plant	58	3	5800
Total	1440	1282	174300

8. HRD and Publications

Sr. No.	Category	Number
1	Workshops	4
2	Conferences	2
3	Meetings	9
4	Trainings for KVK officials	1
5	Visits of KVK officials	
6	Book published	
7	Training Manual	1
8	Book chapters	
9	Research papers	4
10	Lead papers	
11	Seminar papers	
12	Extension folder	2
13	Proceedings	
14	Award & recognition	3
15	Ongoing research projects	1

DETAIL REPORT OF APR-2017-18

1. GENERAL INFORMATION ABOUT THE KVK:

1.1. Name and address of KVK with phone, fax and e-mail

Address	Telephone		_ E mail	Website
	Office	FAX		
Shri Hanumantharaya	9440607424		pendekantikvk@rediffmail.com	
Educational &			pendekantikvk@gmail.com	
Charitable Society,				
Krishi Vigyan Kendra,				
Yagantipalle (P)				
Banaganapalle (M)				
Kurnool (Dt.) A.P.				

1.2 .Name and address of host organization with phone, fax and e-mail

Address	Telephone		E mail	Website
	Office FAX			
Shri Hanumantharaya	9440607424		pb1961@rediffmail.	
Educational &			<u>com</u>	
Charitable Society,				
Krishi Vigyan Kendra,				
Yagantipalle (P)				
Banaganapalle (M)				
Kurnool (Dt.) A.P.				

1.3. Name of the Programme Coordinator with phone & mobile No

		Telephon	e / Contact
Name	Residence	Mobile	Email
Smt. G.Dhanalakshmi		9440607424	dhana66@rediffmail.com

1.4. Year of sanction: 1989

1.5. Staff Position (as on 30th March, 2018)

SI. No.	Sanctioned post	Name of the incumbent	Designation	Discipline	Pay Scale	Present basic (Rs)	Date of joining	Permanent /Temporary	Category (SC/ST/ OBC/ Others)
1	Sr. Scientist & Head	G.Dhanalakshmi	Sr. Scientist & Head	Home Science	15,600- 39,100	40,870	03-04-2003	Permanent	OC
2	Subject Matter Specialist	K.Venkata Ramanaiah	SMS (Soil Science)	Soil Science	15,600- 39,100	35,540	10-07-1996	Permanent	ВС
3	Subject Matter Specialist	M.Sudhakar	SMS (Agronomy)	Agronomy	15,600- 39,100	35,540	23-09-1996	Permanent	OC
4	Subject Matter Specialist	D.Balaraju	SMS (Plant Protection)	Plant Protection	15,600- 39,100	31,170	04-04-2003	Permanent	OC
5	Subject Matter Specialist	A.Krishna Murthy	SMS (Animal Husbandry)	Animal Husbandry	15,600- 39,100	25,840	29-06-2010	Permanent	OC
6	Subject Matter Specialist	P. Nagarjuna Reddy	SMS (Agril. Extension)	Agricultural Extension	15,600- 39,100	21,000	27-03-2018	Permanent	OC
7	Programme Assistant	K.Lakshmi Priya	Programme Asst. (Home Science)	Home Science	9,300- 34,800	25,280	18-06-1996	Permanent	ВС
8	Programme Assistant	B. Koteswar rao	Programme Asst. (Agronomy)	Agronomy				Temporary	SC
9	Accountant / Superintendent	N. Nagaraju	Assistant		9,300- 34,800	14,330	24.08.2015	permanant	OC

10	Jr.Asst. cum Typist (SK)	B.V.M.V.Prasad Rao	Jr. Asst. cum Typist	Jr. Asst. cum Typist	5,200- 20,200	16,480	21-03-1990	Permanent	ВС
11	Driver	Iqbal Basha	Driver cum Mechanic	Driver cum Mechanic	5,200- 20200	12,980	20-09-1995	Permanent	OC
12	Driver	D.Obulesu	Driver cum Mechanic	Driver cum Mechanic	5,200- 20200	12,590	01-08-1996	Permanent	SC
13	Attender	P.Raghava Reddy	Attender	Attender	4,440- 20200	11,270	02-11-1990	Permanent	OC
14	Watchman	T.P.Gurappa	Watchman	Watchman	4,440- 20200	11,010	30-12-1994	Permanent	ВС
15	Cook	T.Rajeswari	Cook	Cook	4,440- 20200	11,010	20-09-1995	Permanent	ВС
16	Farm Attendant	A.Rama Subbaiah	Farm Attendent	Farm Attendent	4,440- 20200	11,010	01-10-1996	Permanent	ВС

1.6. Total land with KVK (in ha) : 20 ha

S.	Item	Area (ha)
No.		
1.	Under Buildings	2
2.	Under Demonstration Units	1
3.	Under Crops	10
4.	Orchard/Agro-forestry	4
5.	Others (specify)	3

1.7. Infrastructural Development:

A) Buildings:

S.	Name of building	Source	Stage					
No.		of	Complete		Incomplete		te	
		funding	Completion	Plinth area	Expenditure	Starting	Plinth area	Status of
			Date	(Sq.m)	(Rs.)	Date	(Sq.m)	construction
1.	Administrative	ICAR	1994	550	7.59	1990-91		
	Building							
2.	Farmers Hostel	ICAR	1994	450	8.0	1990-91		
3.	Staff Quarters(6)	ICAR	1998	650	32.27	1992-93		
4.	Demonstration Units (3)	ICAR	1992-93	300	6.5	1992-93		
5.	Fencing	ICAR	2005-06		6.5	2004-05		
6.	Rain Water harvesting system	-	-	-	-			
7.	Threshing floor	-	-	-	-			
8.	Farm Godown	ICAR	2005-06	112.5	5.28	2005-06		
9.	Soil Testing Laboratory	ICAR	2004-05	112.5	8.59	2004-05		
10.	Goat Shed	ICAR	2016-17	35.0	3.0	2016-17		

B) Vehicles:

Type of vehicle	Year of purchase	Cost (Rs.)	Total km. Run	Present status
TATA Sumo	2009	6,00,000-00	175948km	OK
Mahindra & Mahindra Tractor	2005	3,54,522-00	30678 (hrs)	OK
Motorcycle (Hero Honda)	2014	-	13386 KM	OK

C) Equipments & AV Aids:

Name of the equipment	Year of purchase	Cost (Rs.)	Present status
Tape Recorder	1990	2,600-00	ОК
Over Head Projector	1991	6,200-00	OK
Slide Projector	1991	7,168-00	OK
Ahuja Micro phone Set	1994	9,500-00	OK
Television	1994	19,999-00	OK
Video Casette Recorder	1996	19,000-00	OK
Ahuja Portable wireless Amplifier	2003	9,927-00	OK
Cordless micro phone	2003	5,804-00	OK
Collar Mike	2005	5,800-00	ОК

1.8. A) Details of SAC meeting held on 06.03.2018 for the year 2018-19:

The SAC meeting was held on 6th of March, 2018 at KVK. The meeting was presided over by Sri. P.Balaji, Secretary, SHE&CS. At the outset, Smt. G.Dhanalakshmi, Programme Coordinator has welcomed the SAC members, Guests. The programme started with ICAR Song.

Significant Achievements of KVK, Future requirements of KVK and Action Taken Report was presented by Smt. G.Dhanalakshmi, Programme Coordinator, KVK followed by presentations of Work Done Report for 2017-18 and Action Plan for 2018-19 by individual Subject Matter Specialists Viz., Crop Production, Soil Science, Plant Protection, Animal Husbandary and Programme Assistant, Home Science.

The following observations, remarks and suggestions were made by the SAC members.

SI. No.	Name and Designation of Participants	Salient Recommendations
1	Dr. N. Saralamma Principal Scientist (Plant Path.), RARS, Nandyal	 Recommended to take up the programmes in adopted villages and study the impact Recommended red gram transplanting for gap filling purpose only
2.	Dr. M.R.Sreenivasulu, ADR (Rtd.), Member, SHE&CS.	Enquired about the performance of hybrid Red gram
3.	Sri K. Vishwanath Reddy ADA(R), Koilkuntla.	 Suggested promoting growing of red gram with nursery Recommended to promote Sub soiler usage to retain moisture in the soil with mother furrows. Problems in late sown paddy are more and it should be addressed by the scientists Suggested to display digital board in one village to disseminate day to day agriculture information
4.	Sri R.Kothwal NSC, Production Officer, Nandyal	 Informed that seed production of the varieties which are needed at national level can be produced at the district level. Recommended to promote varieties which are photo insensitive, with less water requirement and good yielders.

5.	Smt P. Narasamma DPM, DRDA, Kurnool	Briefed that 46,000 groups are existing tin the district with 4,00,000 members and also informed that income generating activities can be taken up by the group for which financial support will be given by DRDA
6.	Sri P. Purushotham Reddy Farmer, Sunkesula	Area of Sunflower was reduced drastically due to decreased market price.
7.	Sri S. Vijay Bhaskar Reddy Farmer, Yagantipalle	Shared his experience on double cropping and suggested to promote Safflower and Horse gram.
8.	Sri M. Veerabhadra Reddy Farmer, Betamcherla	 Shared his experience regarding the low yields of Seteria (SIA3222) due long dry spell. The yields of red gram were also reduced. He opined that whastap group message was really useful to the farmers.
9.	Dr. C. Venkata Ramana Varma AD (AH), Banaganapalle.	Recommended growing ram lambs for breeding purpose.

List of participants attended the SAC Meeting:

S.No	Name	Designation
1.	Sri. P.Balaji	Secretary, KVK, Yagantipalle
2.	Dr. M.R. Sreenivasulu	ADR (Rtd.), Banaganapalle.
3.	Sri R.Kothwal	NSC, Production Officer, Nandyal.
4.	Sri G. Anil Kumar	Horticulture Officer, Nandyal
5.	Sri H.M.Raghu Ram	Assist. Director, Kurnool.
6.	Sri B.V.G. Sudha Ramudu	MIDC, APMIP, Kurnool.
7.	Sri G. Venkata Rami Reddy	S.S.C.O. APSSCA, Nandyal.
8.	Sri K. Vishwanath Reddy	ADA(R), Koilkuntla.
9.	Dr. C. Venkata Ramana Varma	AD (AH), Banaganapalle.
10.	Dr. M. Brahmananda Reddy	МАНО
11.	Dr. B. Srikanth Reddy	VAS Yagantipalle
12.	Smt G.V. Raja Rajeswari	Supervisor, ICDS
13.	Sri A. Uma Maheswara Reddy	DDA, Trg., O/o JDA, Kurnool
14.	Sri K. Rama Rao	PD, ATMA, Kurnool.
15.	Smt P. Narasamma	DPM, DRDA, Kurnool.
16.	Sri N. Srinivasulu	FPO, ADM, Velugu.
17.	Dr. R. Vijay Kumar	DRDA, Kurnool.
18.	Dr. N. Saralamma	PS (Plant Path.), RARS, Nandyal.
19.	Sri S. Konda Reddy	Special Officer, SHE&CS
20.	Smt. G. Dhanalakshmi	Programme Coordinator
21.	Sri N. Chinna Obulesu	AEO, Banaganapalle.
22.	Sri D. Narasimhudu	AEO, Banaganapalle
23.	Sri P. Purushotham Reddy	Farmer, Sunkeasula.
24.	Sri B. Sreenivasulu	Farmer.
25.	Sri S. Vijay Bhaskar Reddy	Farmer, Yagantipalle.
26.	Sri M. Veerabhadra Reddy	Farmer, Bethamcherla.
27.	Smt K. Maheswaramma	Farm Women, Yagantipalle.
28.	Smt Y. Rani	Farm Women, Banaganapalle.
29.	Smt B. Rajeswaramma	Farm Women, Yagantipalle.
30.	Sri. M.V.Krishna Reddy	Farmer, Kalugotla
31.	Sri D. Chinnapu Reddy	Farmer, Banaganapalle.
32.	Mr. P. Naga Venkatesh	Farmer, Banaganapalle.
33.	Sri P.B. Hari Krishna	Farmer, Nandavaram.
34.	Smt Y. Padmavathamma	Dairy Farmer, Loddipalle, Orvakal.

2. DETAILS OF DISTRICT (2017-18)

2.1 Major farming systems/enterprises (based on the analysis made by the KVK):

S. No	Farming system/enterprise
1	Agriculture + Horticulture
2	Agriculture + Dairy
3	Agriculture + Horticulture + Dairy
4	Agriculture + Horticulture + Pastural Culture

2.2 Description of Agro-climatic Zone & major agro ecological situations (based on soil and topography):

S. No	Agro-climatic Zone	Characteristics
1	Scarce rain fall zone	Low, scanty and erratic rainfall due to which successful crop production with good yield is unexpectable and dry land agriculture is predominant with a variety of rainfed crops in the zone.

Agro-ecological situations:

S.	Agro ecological situation	Characteristics	Area (in Ha)
No			
1	K.C canal irrigated red soils	Paddy-Paddy, Greengram-Paddy	5432
		Paddy-Groundnut, Vegetables	
		Paddy-Fallow	
2	T.B.Low level canal	Paddy-Paddy, Paddy-Groundnut	11612
	irrigation Red soils	Greengram-Paddy, Vegetables	
		Groundnut/Fallow	
3	T.B. High level canal irrigation Red soils	Greengram-Paddy, Paddy/Groundnut/	140
		Vegetables-Fallow	
4	K.C.Canal irrigation Black soils	Paddy-Greengram-Paddy	67685
		Paddy/Groundnut-Vegetables	
		Sunflower/Groundnut-Fallow	
		Groundnut/Cotton-Fallow	
5	T.B.Low level canal	Greengram/Paddy-Paddy	15374
	irrigation-Black soils	Paddy-Groundnut/Vegetables	
		Sunflower-Groundnut,	
		Groundnut-Sunflower, Cotton-Fallow	
6	T.B.High level canal	Paddy-Fallow, Sunflower/Groundnut-Fallow	5516
	irrigation Black soils		
	-		

7	Problem soils	Greengram-Paddy, Fallow-Paddy Fallow- Paddy	100
8	Tank irrigation Red soils	Paddy-Sunflower/Fallow Paddy/Sunflower-Fallow	5284
9	Tank irrigation Black soils	Paddy-Paddy/Groundnut Sunflower-Fallow, Fallow-Paddy/Groundnut/Sunflower	18230
10	Well irrigation Red soils	Paddy-Paddy/Sunflower/Groundnut Sunflower-Groundnut/Greengram Groundnut – Groundnut/Sunflower Cotton/Onion-Fallow	51462
11	Well irrigation Black soils	Paddy-Paddy/Sunflower/Groundnut Sunflower/Vegetables Cotton/Onion/Chillies-Fallow	54313
12	Rainfed Red soils	Sunflower, Groundnut+Redgram Groundnut+Jowar, Cotton Cotton+Redgra, Jowar, Korra, Redgram-	274831
13	Rainfed-Black soils	Fallow Paddy-Fallow Sunflower/Bengalgram/Coriander fallow Jowar/Bengalgram/Tabacco	436005
14	SRBC – Redsoils	Jowar/Groundnut/Cotton-Fallow B.t. Cotton, Jowar, Redgram, Groundnut,Korra	333
15	SRBC – Black soils	Rice, Jowar, Maize	4081
16	TGP – Red soils	G.nut, Vegetables, Sunflower, Chillis, Cotton	5589
17	TGP –Black soils	Rice, B.t. Cotton, Chillis	14592

2.3 Soil types:

S.	Soil type	Characteristics	Area in
No			lakh ha
1	Black cotton soils	Heavy and deep to very deep belonging to vertisols.	3.69
2	Red earths	Clayey sub soil (association of alfisols and inceptisols)	1.29
3	Red earths	Loamy sub soil i.e chalkas (association of inceptisols and alfisols)	3.18
4	Red sandy loam soils	Dubbas & Chalkas (association of entisols, inceptisols and alfisols)-Light textured soils, poor water holding capacity, poor fertility	0.54
5	Problem soils (Saline/sodic)	High pH more than 9.0	1.04
6	Rock land and others	Undulated sloppy lands. Very shallow soils.	0.47

2.4. Area, Production and Productivity of major crops cultivated in the district

Kharif: 2017 (Area in Ha)

Sl.no	Crop name	Normals	Area sown during the corresponding period kharif 2016 final	Kharif 2017 actual	Percentage
1	Paddy	76474	79264	59592	77.92
2	Jowar	12613	6867	5940	47.09
3	Bajra	8492	8413	7885	92.85
4	Maize	31399	27874	39752	126.60
5	Sateria	14192	11601	6016	42.39
6	Redgram	60835	111296	64482	105.99
7	Greengram	1811	2098	878	48.48
8	Blackgram	5521	13542	14265	258.38
9	Horsegram	21	0	1	4.76
10	Groundnut	110124	113447	85784	77.90
11	Sesamum	35	29	8	22.86
12	Sunflower	4764	2988	1031	21.64
13	Castor	35731	19915	12764	35.72
14	Soyabeen	283	593	336	118.73
15	Other oil seeds	31	0	14	45.16
16	Chillies	16936	26477	13183	77.84
17	Onion	20754	24502	12945	62.37
18	Turmeric	1951	1861	1155	59.20
19	Sugarcane	860	406	453	52.67
20	Cotton	208222	176195	259225	124.49
21	Mestha	132	20	0	0.00
22	Other crops	25222	28824	11048	43.80
	TOTAL	636403	656214	607583	95.47

Rabi -2017-18: (Area in Ha)

SI. No	Crop name	Normal	Area sown during the corresponding period 2016-17	Area sown 2017-18	Percentage of coverage
1	Paddy	22239	29451	41962	188.69
2	Wheat	207	32	16	7.73
3	Jowar	57477	46921	47452	82.56
4	Bajra	292	219	306	104.79
5	Maize	8534	7879	12461	146.01
6	Ragi	0	0	0	0
7	Korra	340	526	163	47.94
8	Bengal gram	186711	170870	195230	104.56
9	Redgram	1254	2023	1124	89.63
10	Greengram	1385	389	137	9.89
11	Blackgram	11570	20521	10097	87.27
12	Horsegram	394	47	252	63.96
13	Other pulses	0	0	0	0
14	Groundnut	16837	17511	14326	85.08
15	Sesamum	1142	203	886	77.58
16	Sunflower	10249	1701	568	5.54
17	Safflower	132	83	20	15.15
18	Castor	311	50	56	18.01
19	Rape & mustard	2681	4040	1896	70.72
20	Other oil seeds	26	0	0	0.00
21	Cotton	57	0	0	0.00
22	Chillies	458	431	379	82.75
23	Onion	2130	1636	4015	188.50
24	Tobacco	6158	6078	4808	78.08
25	Coriander	4961	0	882	17.78
26	Others	5656	8374	6393	113.02
	TOTAL	341695	318985	343518	100.53

Productivity Levels of Principal crops grown during Kharif for past 5 years (Kgs./Ha)

		Year				
SI. No	o Crop name	2013	2014	2015	2016	2017
1	Paddy	5700	5850	5460	6700	5086
2	Maize	5400	5600	4018	7500	5075
3	Castor	1300	1500	790	1800	1800
4	Groundnut	845	876	620	900	1389
5	Cotton	1470	1336	412	1500	1621
6	Jowar	2350	2250	1200	2500	2600
7	Redgram	1000	1050	450	800	900

Productivity Levels of Principal crops grown during Rabi for past 5 years (Kgs./Ha)

SI. No	Crop name	2013-14	2014-15	2015-16	2016-17	2017-18
1	Paddy	5925	6000	5500	6000	5500
2	Maize	5400	5600	4600	6000	4500
3	Bengalgram	950	1000	600	1200	1200
4	Groundnut	845	876	891	900	2200
5	Blackgram	1100	1200	908	1500	1350
6	Jowar	2350	2450	1850	2000	4500

2.5. Weather data

Month	Rainfall (mm)	Temperature ⁰ C			
		Maximum	Minimum		
Apr -17	10.1	41.6	25.8		
May-17	26.6	42.2	26.6		
Jun -17	109.2	37.4	24.4		
Jul -17	63.5	35.2	24.0		
Aug -17	180.8	34.8	23.8		
Sep -17	179.8	34.6	23.6		
Oct -17	176.7	33.4	20.6		
Nov-17	1.6	31.8	18.4		
Dec -17	0.0	32.0	18.0		
Jan -18	0.0	30.4	18.8		
Feb -18	0.0	32.0	20.8		
Mar -18	0.0	34.2	23.0		
Total:					

2.6. Production and productivity of livestock, Poultry, Fisheries etc. in the district

Category	Population	Production	Productivity
Cattle			
Crossbred	6452	3.98 lakh metric tonnes of milk	6-8 lt
Indigenous	409575		1.5-2.5
Buffalo	410783		2-3
Sheep& Goat	· ·		•
Crossbred	-	19,087 metric tonnes of meat	
Indigenous	1504038		12.5 kg
Goats	505112		
Pigs	16949		
Crossbred			
Indigenous			
Rabbits			
Poultry			•
Hens	2,74,957	857 lakh No.s eggs	
Desi	6,41,218		60-70 eggs
Improved	3,35,127		245-260 eggs
Ducks	942		
Turkey and others			

2.7 Details of Adopted Villages (2017-18)

Year of adoption:

Sl.No.	Taluk / mandal	Name of the block	Name of the village	Major crops & enterprises	Major problem identified	Identified Thrust Areas
1	Midthur	Midthur	Jalakanur	Cotton, Chillis, Rice, Redgram	Indiscriminate use of Fertilizers and Pesticides in Rice, Chillis and Cotton,	IPM, INM and ICM
				Milch animals	Fodder Scarcity, Mineral deficiency and non availability of concentrate feed	Hydroponic fodder production; Supplementation of RSMM and Feed from agricultural by products.
				Bt cotton	Low Yields due to low plant density	Crop geometry
				Cotton, Paddy	Nutrient disorders	Nutrient management
2	Owk	Owk	K. Sunkesula	Bengalgram, Blackgram, Redgram and Chillis	Indiscriminate use of Chemical fertilizers and Indiscriminate use of insecticides for management of pests in cotton & Chillis	IPM, IDM and ICM
3			Junuthala Ligambodu	Groundnut and sunflower	Low productivity in oilseeds Due moisture stress	Introduction of Varieties tolerant Moisture stress, Balanced nutrition and weed management.

4	Koilakuntla	Koilakuntla	Amadala	Bengalgram, Jowar	Indiscriminate use of Pesticides	IPM
5	Banaganapalle	Banaganapalle	Bhanumukkala, Yagantipalle	Rice, Maize, Vegetables	Indiscriminate use of Fertilizers and Pesticides	INM and IPM
6			Hussainapuram	Paddy	Micronutrient deficiencies	Nutrient management
7			Meerapuram, Jolapuram	Redgram, Greengram, Korra	Indiscriminate use of Pesticides, Poor choice of varieties	ICM and IPM
8			Nandavaram and Illurukothapet	sunflower	Low productivity in oilseeds	Integrated crop management in sunflower
9	Bethamcherla	Bethamcherla	H.Kottala, Kolumulapalle	Redgram, Bengalgram, Korra	Indiscriminate use of pesticides, poor knowhow on varieties suitable	ICM and IPM
10			R.S Ranagapuram	Bengalgram Foxtail millet, Redgram	Micronutrient deficiencies	Nutrient management
11			I Kothapet	Bengalgram Jowr	Micronutrient deficiencies	Nutrient management
12	Gospadu	Gospadu Servella	Sreenivasapuram Govindapalli	Rice, Sesame	Low productivity in rice –rice system Low productivity in oilseeds	Introduction of rice based cropping systems (rice-Maize and rice-sunflower) Introduction of improved varieties of Sesame

2.8 Priority/thrust areas

Crop/Enterprise	Thrust area
Seed Production	Addressing the scarcity of quality seed :
	Availability of quality seed to the farmer is one of the major constraint farmers facing every year. They are depending on the private market / government agencies for their seed requirements. The supply is not meeting the demand in time and more over farmers are being cheated by different agencies with spurious seed. Awareness should be created about the production of own seed by the farmer. For this, seed village concept is required at least in direct varieties in crops like paddy, red gram, desi cotton, Bengal gram, which have huge demand in the market has to be promoted
Cropping system:	crop intensification in Rainfed black soils
	On black soils of Kurnool district generally one crop Bengalgram/fallow-Jowar is being taken during rabi (September - October) in an area of 3.02 laksh ha. Farmers are getting low net returns/ha. Foxtail millet (korra), crop being its short duration may fit well in double cropping sequence (Korra- Bengalgram/ Jowar) under rainfed situation in black soils. Inorder to increase net returns Rs/ha and cropping intensity, Seteria- bengalgram can be successfully grown in rainfed black solis ,if onset of monsoon are intime.
Varietal replacement	The productivity of crops are lowest due to cultivation of old and
	traditional varieties due to non availability of improved varieties/hybrids .Seed is the vital and critical input for crop production. Crop productivity is highly influenced by selection of high yielding varieties. Among different components of recommended package of practices, improved variety contributes up to 30 percent to the overall yield improvement. Keeping this in view KVK, Yagantipalle is organized several FLDs in Cereals, oil seeds, pulses and other crops in order to popularize improved varieties in different parts of Kurnool district
Resource conservation	In Kurnool district Maize crop is being cultivated in an area of 14,604 ha
Zero Tillage and Direct	and 10898 ha during kharif and rabi respectively with average productivity
seeding in paddy	of 6250 kg /ha. In the district recently Rice followed by maize gaining
	popularity moreover their reaping good yields. There is a lot of scope to increase the acreage under this cropping system.
	Direct seeding in paddy has to be promoted as more than one lakh ha of
	area is under paddy. Direct seeding paddy saves time, water and labour.
	Farmers should be educated about this technology.
Redgram	IPM for Pod Borers and Pod Fly
Chillis	Sucking pest and Viral disease management
Rice	IPM for Leaf folder, Stem borer and IDM for blast and Sheath blight
Cotton	IPM for sucking pest management
Blackgram & Greengram	YMV management

3. TECHNICAL ACHIEVEMENTS

3.A. Details of target and achievements of mandatory activities by KVK during 2017-18

OFT (Technology Assessment)				FLD (crop/enterprise/CFLDs)			
1			2				
Number	Number of technologies Total		no. of Trials	of Trials Area in ha		Number of Farmers	
Targets	Achievement	Targets	Achievement	Targets Achievement		Targets	Achievement
19	19	106	106	210	210	409	409

Training (including sponsored, vocational and other trainings carried under Rainwater Harvesting Unit) 3						Extension	Activities	
Number of Courses			Number of Participants		Number of activities		Number of participants	
Clientele	Targets	Achievement	Targets	Achievement	Targets	Achievement	Targets	Achievement
Farmers & farm women	56	79	1591	2437	12	12	905	1019
Rural youths	11	11	975	988				
Extension functionaries	8	8	413	421				
Vocational	1	1	20	20				

	Seed Production	ı (Qtl.)	Planting material (Nos.)			
	5		6			
Target	Achievement	Distributed to no. of farmers	Target	Distributed to no. of farmers		
1250	1284.75	4847	1,20,000	1,20,000	33	

3.b. TECHNOLOGY ASSESSMENT

Summary of technologies assessed under various crops by KVKs

Thematic areas	Crop	Name of the technology assessed	No. of trials	No. of farmers
	Rice	Yield maximization through Boron application	6	6
Integrated Nutrient Management	Red gram	Assessment of efficacy of potassium and zinc on productivity of Red gram	6	6
	Maize	Yield maximization through Boron application	6	6
Varietal Evaluation	Red gram	Varietal Evaluation of medium duration Red gram varieties	6	6
	Red gram	Effect of Nipping in Hybrid Red gram	6	6
	Black gram	Evaluation of new varieties against YMV	6	6

Integrated Pest Management	Redgram	Management of Pod borers with special reference to pod fly	6	6
Cropping systems	ystems Red gram Red gram based intercropping systems			
	Rice	Rice based cropping sequences under limited irrigation	6	6
Integrated Crop Management	Jowar	Management of Shoot fly and Stem borer	6	6
Resource Conservation Technology	Rice	Evaluation of Organic farming for pest management and yield	6	6
Drudgery Reduction	Chillies	Assessment of fertilizer dispenser for applying fertilizers in chillies to reduce drudgery of farm women	1	2
	Rice Jowar Red gram	Triple layer hermetic storage bags for storing of Rice, Red gram dhal & Jowar at household level		60
	Tomato	Easy planter for transplanting tomato seedlings to reduce Drudgery of farm women		2
	T	otal	71	130

Summary of technologies assessed under livestock by KVKs

Thematic areas	Name of the livestock enterprise	Name of the technology assessed	No. of trials	No. of farmers
Feed and Fodder	Dairy	Evaluation of different feed	5	5
management		formulations supplemented with agricultural by products		
	Dairy	Assessment of improved	5	5
		fodder var. Super Napier		
Nutrition Management	Dairy	Supplementation of	5	5
		concentrate feed along with wet distillery grains		
	Dairy	Supplementation of Bypass fat	10	10
	Dairy	Feeding of balanced ration to milch buffaloes	10	10
	Total		35	35

3.c. TECHNOLOGY ASSESSMENT IN DETAIL

OFT:1

S.No	Item		Particulars				
1	Thematic Area	:	Cropping systems				
2	Title	:	Assessment of Redgram based intercropping Systems in rainfed				
			situation				
3	Scientists Involved	:	M.Sudhakar, SMS(Agronomy)				
4	Details of Farming	:	Rainfed, Medium black soils,				
	Situation		fertility Status				
5	Problem	:	In Kurnool district generally Redgram is being cultivated in an				
	definition/description		area of 45,000 ha and yields are limited by the amount and				
			distribution of rainfall during monsoon period. There is a limited				
			scope for increasing pulse productivity by increasing in area. The				
			increasing demand can be met by increasing the productivity				
			through adopting appropriate agronomic practices of which				
			intercropping is one of the best way to increase production.				
6	Technology assessed	:	T1: Redgram + Greengram (1:5)				
			T2: Redgram + blackgram (1:5)				
			T3: Redgram + setaria (1:5)				
			Farmers practice: Redgram (Sole)				
7	Critical Inputs given	:	Seed				

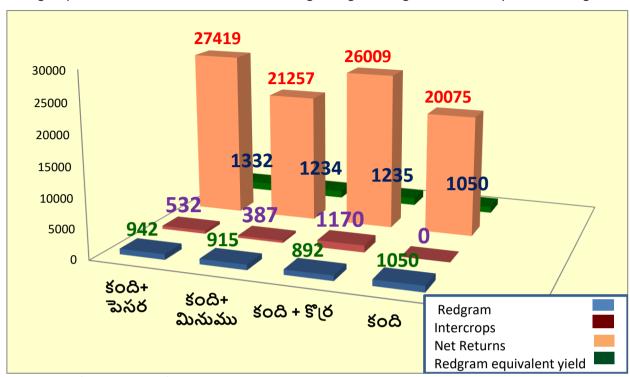

8. Results:

Table: Performance of the technology:

Technology Option	No.of trials	Yield (t/ha)	Net returns (Rs. in lakh./ Ha.)	B:C ratio	LER	Redgram Equivalent Yield(Kg/ha)
Farmers practice:		1050	20075-00	1:1.52	1.0	1010
Redgram						
(Sole)						
T1: Redgram +	6	942	27419-00	1:153	1.56	1332
Greengram (1:5)						
T2 Redgram + blackgram		915	21257-00	1:153	1.39	1234
(1:5)						
T3: Redgram + setaria		892	26009-00	1:1.4	1.63	1235
(1:5)						

Description of the results:

On farm testing on **Assessment of redgram based intercropping Systems in rainfed situation** was conducted during the kharif season of 2017 at Yagatipalli and Krishnagiri villages of Banaganapalli mandal. The results indicated that growing of Red gram as sole crop recorded higher

grain yield (1050 kg ha-1) over Redgram in intercropping system. Among the cropping systems, intercropping of Greengram with Pigeopea resulted in maximum pigeonpea equivalent yield (1332 kg ha⁻¹) over other systems. The LER is high with Pigeonpea + Setaia intercropping system compared to other inter cropping systems. Ahmad and Prasad (1996) also reported higher LER with little millet + Pigeonpea intercropping system.

9. Feed back of the farmers involved:

- Red gram based intercropping system found to be remunerative than sole crops of seteria/redgram/Greengram /blackgram even under drought conditions.
- Fodder needs of cattle and milch animals were met.
- While maintaining the yield levels of the sole crop, additional yields with the intercropping component have been realized.
- Since, a food legume is involved in the system, it will not only enhance the income of the farmer, but also provide with the much-needed protein to supplement the predominantly cereal diet of farmers, besides adding fertility to the Soil.

10. Feed back to the scientist who developed the technology:

Research on development of medium duration Red gram varieties has to be strengthened.

OFT:2

S.No	Item		Particulars Particulars
1	Thematic Area	:	Cropping systems
2	Title	:	Assessment of alternate crops for paddy under limited
			irrigated conditions in paddy-paddy cropping sequences
3	Scientists Involved	:	M. Sudhakar, SMS(Agronomy)
4	Details of Farming	:	Irrigated, black soils
	Situation		
5	Problem definition/description	:	Rice is one of the popular food crops being grown in canal, tank fed and under bore wells of the Kurnool district. In recent years farmers are growing winter crops. But still majority of farmers grow rice as summer crop if the water is available. It is established that rice requires more water along with more quality farm inputs and low net returns/ha due to high cost of cultivation. As the cost of cultivation is high and limited water facility there is need to take up alternate crop to paddy as second crop.
6	Technology assessed	:	T1: Paddy- Mustard T2: Paddy- Setaria T3: Paddy- Blackgram Farmers Practice: Paddy-Paddy
7	Critical Inputs given	:	Seed

8.Results:

Table: Performance of the technology:

Technology Option	No.of trials	Yield (t/ha)	Net Returns (Rs. in lakh./ha)	B:C	Paddy ,
Padd-Paddy(Farmers Practice)		6366	37820-00	1:1.63	6366
T1: Paddy- Mustard	6	805	43096-00	1:3.01	4203
T2: Paddy- Setaria		2407	27153-00	1:2.67	2828
T3: Paddy- Blackgram		960	47450-00	1:1.84	3169

Description of the results:

In the present study, the yields of crops considered were converted into a common standard Rice equivalent yield. Based on Rice equivalent yield the results shows that among all the rice based cropping sequences, Rice-Rice sequence found to be superior followed by Paddy-Blackgram and Paddy-Mustard. But the CB ratio was highest with Paddy- Mustard sequence followed by Paddy-Setaria. But the net returns were highest in case of Paddy-Blackgram and Paddy-Mustard followed by Paddy-Paddy. The CB ratio analysis showed that the Paddy sequence with Mustard gave highest returns followed by Paddy-Setaria.

9. Feed back of the farmers involved:

Among all Paddy based sequences Paddy- Mustard followed by paddy-Setaria was found useful for the farmers to reap maximum net returns per unit area and time.

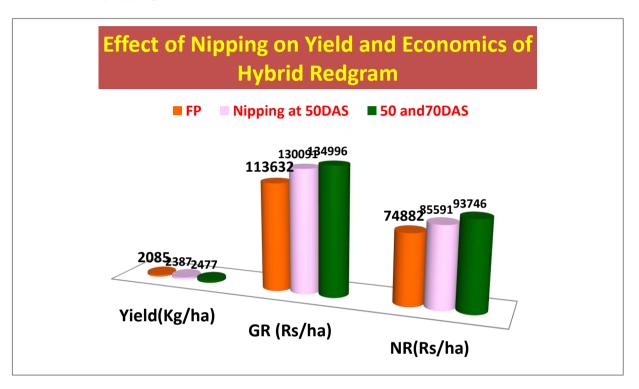
10. Feed back to the scientist who developed the technology:

Research on development of High yielding Mustard varieties suitable for relay cropping/Rice fallows has to be strengthened.

OFT:3

S.No	Item		Particulars Particulars
1	Thematic Area	•	Cropping systems
2	Title	:	Assessment of Nipping on Yield of Rainfed Redgram
3	Scientists Involved	:	M.Sudhakar, SMS(Agronomy)
4	Details of Farming	:	Irrigated, black soils,
	Situation		fertility Status
5	Problem definition/description	:	Red gram is an important pulse crop. The crop is largely grown under rainfed situation, its agronomic practices are required to be standardized for realizing yield potential. Among them plant population and the number of reproductive sink/plant are the key factors for determining the yield. In Kurnool district, Redgram being cultivated in an area of 45000 ha under rainfed situation. The productivity levels are low due to high plant densities, increased plant height, less no of Primary & secondary branches, terminal moisture stress.
6	Technology assessed	:	T1: Farmers practice T2: Sowing at 180cm and Nipping at 50 DAS T3: Sowing at 180cm and Nipping at 50 DAS and 70DAS
7	Critical Inputs given	:	Seed

8. Results:


Table: Performance of the technology:

Technology Option	No.of trials	Yield (t/ha)	Net Returns (Rs. in lakh./ha)	B:C ratio
T1: Farmers practice		2085	74882	2.93
T2: Sowing at 180cm and Nipping at 50 DAS	6	2387	85591	3.21
T3: Sowing at 180cm and Nipping at 50 DAS and 70DAS		2477	93746	3.27

Description of the results:

The results indicated that Nipping of terminal bud at 50 DAS and 70 DAS and Nipping at 50 DAS recorded on-par yields. Nipping of terminal bud significantly reduced the plant height and increased the number of primary and secondary branches, pods per plant and test weight. The increased yield components may be attributed to activation of lateral dormant buds. The increase in yield due to nipping was 14.6 per cent over control. The low yields in farmers practice may be attributed to reduction in yield components.

The highest net returns and CB ratio was realized when nipping was done at 50 DAS and 70 DAS followed by nipping at 50 DAS.

9. Feed back of the farmers involved:

- Nipping of terminal bud at 50 DAS and 70 DAS and Nipping at 50 DAS were recorded higher yields than farmers practice, but it is labour intensive.
- Farmers opined that, if nipping machinery is available, it is advantageous.

10. Feed back to the scientist who developed the technology:

Development of power operated for machinery for nipping operation is necessary to overcome labour scarcity during peak season.

OFT: 4

S.No	Item		Particulars
1	Thematic Area	:	Varietal Evaluation
2	Title	:	Assessment of medium duration varieties of Redgram
3	Scientists Involved	:	M.Sudhakar, SMS(Agronomy)
4	Details of Farming Situation	:	Rainfed, Redsoils,
5	Problem definition/description	:	In Kurnool district Redgram being cultivated in an area of 45000 ha under rainfed situation. The productivity levels are low due to high plant densities, increased plant height, less no of Primary & secondary branches and terminal moisture stress.
6	Technology assessed	:	T1: Asha T2: LRG-52 T3: PRG-176
7	Critical Inputs given	:	Seed

8. Results:

Table: Performance of the technology:

Technology Option	No.of trials	Yield (t/ha)	Net Returns (Rs. in lakh./ha)	B:C ratio
T1: Asha		2025	71755	2.88
T2: LRG-52	6	2125	80187	3.2
T3: PRG-176		1975	72102	3.0

Description of the results:

The results indicated that Redgram varieties *i.e.* LRG-52, PRG-176 and Asha were recorded on-par yield. In Redgram variety LRG-52 and PRG-176 the number of primary and secondary branches, pods per plant more compared local variety *i.e.* Asha.

The highest net returns and CB ratio was realized with LRG-52 followed by PRG-176 due to its short duration and more number pods/plant.

9. Feed back of the farmers involved:

- Among three varieties LRG-52 performed better than PRG-176 and Asha.
- Farmers were impressed with performance of LRG-52

10. Feed back to the scientist who developed the technology:

Incidence of wilt observed in PRG-176

OFT:5

S.No	Item		Particulars
1	Thematic Area	:	Nutrient Management
2	Title	:	Yield maximization through Boron application in Rice
3	Scientists Involved	:	K.V. Ramanaiah
4	Details of Farming	:	Kharif-2017. Irrigated black soils .Soils of OFT plots
	Situation		were high in Phosphorus content and medium to high
			potassium. Boron deficiency was observed in these
			soils.
5	Problem definition/description	:	Micronutrients are essential for the normal growth of plants. Deficiencies of micronutrient drastically affect the growth, metabolism and reproductive phase in plants, animal and human beings. About 50 % soils of Kurnool district were deficient in boron content. About 3 billion people in the world are affected with micronutrient malnutrition. Boron helps in pollination and seed formation, so application of Boron is helpful in better pollination, seed and yield enhancement.
6	Technology assessed	:	T ₁ - Farmers practice (No Boron application) T ₂ - Basal application of Borax-7.5 Kg/ha T ₃ - Foliar application of Borax @0.1% at tillering , panicle initiation and panicle emergence phases.
7	Critical Inputs given	:	along with quantity as well as value)-Borax 7.5 Kg/ha and solu Boron -1Kg/ha Value- Rs.2450/ha

8. Results:

Table: Performance of the technology:

Technology Option	No.of trials	Yield (t/ha)	Net Returns (Rs. in lakh./ha)l (ha)	B:C ratio	Data on Other performance indicators*
Farmers Practice- No boron application		6.434	0.586	1:1.84	
T1- Basal application-7.5 Kg/ha	6	6.681	0.659	1:1.93	
T 2-Foliar application of Borax @0.1% at tillering ,panicle initiation and panicle emergence phases	J	6.967	0.685	1:1.97	

Description of the results:

The result indicated that the yield in both T_1 (6.68t/ha) and T2 (6.96t/ha) were on par and higher than farmer's practice (6.43 t./ha).

9. Feed back of the farmers involved:

Pre seasonal training on soil sampling and testing, fertilizer application and mid seasonal field visits finally field days were organized at initial stages, but application of boron is more effective in yield improvement.

10. Feed back to the scientist who developed the technology:

Efficacy of boron was observed in boron deficient soils when compared sufficient range soils.

OFT:6

S.No	Item		Particulars
1	Thematic Area	:	Nutrient Management
2	Title	:	Assessment of efficacy of potassium and zinc on productivity of Redgram
3	Scientists Involved	:	K.V. Ramanaiah
4	Details of Farming	:	Kharif-2017. Rainfed Red Soils of OFT plots were high
	Situation		in Phosphorus content and medium in potassium. Zinc deficiency was observed in these soils.
5	Problem definition/description Technology assessed	:	Redgram is a major pulse crop cultivated in Kurnool district during kharif season. But the yields are not encouraging. Studies conducted by ARS Utukur, Kadapa revealed that Potassium and zinc application Redgram yields increased significantly. T ₁ - Farmers practice (No K and Zinc application)
O	reciniology assessed	•	T ₂ - Basal application of K-60 Kg/ha T ₃ - Basal application of K-60 Kg/ha + Zinc sulphate-25 Kg./ha
7	Critical Inputs given	:	(along with quantity as well as value)- MOP- 100/ha Value- Rs.1500/ha Zinc sulphate-25 Kg./ha Value-Rs.1000/ha

8. Results:

Table: Performance of the technology:

Technology Option	No.of trials	Yield (t/ha)	Net Returns (Rs. in /ha)	B:C ratio	Data on Other performance indicators*
Farmers Practice- (No K and Zinc application)		0.792	0.144	1:1.76	
T1 -Basal application of K-60 Kg/ha	6	0.963	0.202	1:1.99	
T2- Basal application of K-60 Kg/ha + Zinc sulphate-25 Kg./ha		1.055	0.244	1:2.07	

Description of the results:

The result indicated that the yield in both T_1 (0.963/ha) and T_2 (1.055t/ha) were on par and higher than farmers practice (0.792 t./ha)

9. Feed back of the farmers involved:

Pre seasonal training on soil sampling and testing, fertilizer application and mid seasonal field visits finally field days were organized. However, application of potassium and Zinc is more effective in yield improvement.

10. Feed back to the scientist who developed the technology:

Efficacy of zinc was observed in zinc deficient soils when compared to sufficient range soils.

OFT: 7

S.No	Item		Particulars
1	Thematic Area	:	Nutrient Management
2	Title	:	Yield maximization through Boron application in Maize
3	Scientists Involved	:	K.V. Ramanaiah
4	Details of Farming	:	Rabi-2017. Irrigated black soils .Soils of OFT plots were
	Situation		high in Phosphorus content and medium to high
			potassium. Boron deficiency was observed in these
			soils.
5	Problem definition/description	:	Micronutrients are essential for the normal growth of plants. Deficiencies of micronutrient drastically affect the growth, metabolism and reproductive phase in plants, animal and human beings. About 50 % soils of Kurnool district were deficient in boron content. About 3 billion people in the world are affected with micronutrient malnutrition. Boron helps in pollination and seed formation, so application of Boron is helpful in better pollination, seed and yield enhancement.
6	Technology assessed	:	T ₁ - Farmers practice (No Boron application) T ₂ - Basal application of Borax-7.5 Kg/ha
7	Critical Inputs given	:	(along with quantity as well as value)- Borax 7.5 Kg/ha Value- Rs.1450/ha

8. Results:

Table: Performance of the technology:

Technology Option	No.of trials	Yield (t/ha)	Net Returns (Rs. in lakh./ha)	B:C ratio	Data on Other performance indicators*
Farmers Practice- No bor application	on	7.26	0.2652	1:1.53	
Technology 1-Ba application-7.5 Kg/ha	sal 6	8.08	0.3369	1:1.66	

Description of the results:

The result indicated that the yield of T_1 (8.08 t/ha) is higher than farmer's practice (7.26 t./ha)

9. Feed back of the farmers involved:

Pre seasonal training on soil sampling and testing, fertilizer application and mid seasonal field visits finally field days were organized at initial stages, but application of boron is more effective in yield improvement.

10. Feed back to the scientist who developed the technology:

Efficacy of boron was observed in boron deficient soils when compared to sufficient range soils.

On Farm Testing 8:

S.No	Item		Particulars				
1	Thematic Area	:	Integrated Pest Management				
2	Title	:	Evaluation of Organic Package on Yield and Pest				
			Management in Rice (New)				
3	Scientists Involved	:	D.Balaraju, SMS – Plant Protection				
4	Details of Farming	:	Rice is generally grown under Canal Aycut area and under bore				
	Situation		wells both in black soils and red soils of the district in about 1				
			lakh ha. Annually. Rice – Rice farming system followed in canal				
			areas has resulted in soils becoming salt affected and yields				
			gradually declining from year to year.				
5	Problem	:	Indiscriminate use of chemical fertilizers and pesticides for				
	definition/description		management of soil fertility and pest and disease				
			management in rice, leading to pesticide residues in grain and				
			deterioration of soil health and fertility over years. There is a				
			serious concern among the consumers too with regard to				
			pesticide residues in rice. To revive the lost health of soil and				
			to produce the quality rice on sustainable basis there is a need				
6	Taskaslasıvassasıd	_	of new intervention.				
О	Technology assessed	:	Organic package of crop and pest management in Rice will be				
			assessed against conventional indiscriminate use of fertilizers				
			and pesticides followed by farmers.				
			T1 – Farmers practice – Indiscriminate use of pesticides.				
			No FYM or Green Manuring.				
			 NPKS (kg/ha) - 365 - 188 - 110 - 85 				
			 Zinc Sulphate (kg/ha) - 50 				
			• 1 granule application and 5 rounds of pesticide				
			application.				
			o Carbofuron @ 25 kg/ha basal or PI stage				
			 Mono 36% SL or Chloro 50 EC or L-cyhalothrin spray @ 1 lt/ha + 19-19-19 2.5 kg/ha or Zinc 12% @ 250 g/ha 				
			○ Cartap Hydrochloride 50 % SP @ 1 kg/ha +				
			Carbendazim @ 500 g/ha or Car+Maco @ 1 kg/ha				
			o Profenophos @ 1 lt/ha + Hexaconazole @ 1 lt/ha /				
			o Buprofezen @ 1 lt/ha or Dinotefuron 20% SC @ 250				

			g/ha + Tricyclazole @ 300 g/ha Pymetrozine 50% WG @ 120 g/ac + Tricyclazole @ 300 g/ha T2 - Assessment - Organic package FYM/Green manure, Neem cake (100 kg/ac); Pseudomonas /PSB /Azospirillum (1 kg each) seed/seedling/soil treatment; Neem oil, Botanical extracts, Pf, Jeevamrith, Beauveria for PP,
7	Critical Inputs given	••	Neem cake @ 100 kg/ac = Rs. 1500/ac Pseudomonas 2 kg, PSB, Azospirillum @1 kg each/ac = Rs.300/ac Neem oil @ 1 lt/ac = Rs. 400/ac and Beauveria @ 1 lt/ac = Rs.300/ac Total of Critical inputs Rs. 2500-00 per ac.

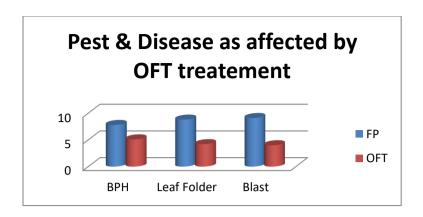
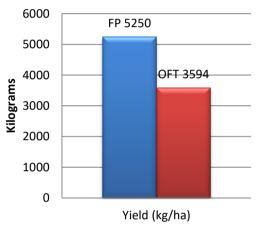

8. Results:

Table : Performance of the technology


Technology Option	No.of trials	Yield (t/ha)	Net Returns(Rs. lakh./ha)	B:C ratio	Data on Other performance indicators*
Farmers Practice : Indiscriminate use of pesticides.		5.25	0.44	1.72	BPH-7.8/plant Leaf folder–8.8 % Blast - 9.1 % Cost of PP – Rs. 8,750/ha
Technology 1: Organic package FYM/Green manure, Neem cake (100 kg/ac); Pseudomonas /PSB /Azospirillum (1 kg each) seed/seedling/soil treatment; Neem oil, Botanical extracts, Pf, Jeevamrith, Beauveria for PP,	6	3.594	0.29	1.67	BPH - 5.1/plant Leaf folder-4.2 % Blast - 4.0 % Cost of PP - Rs. 2,375/ha

Description of the results:

The result indicated that organic practice gave 31.5% lower yield compared to farmers practice. But the cost benefit ratio in organic products is better as it fetches premium price. Incidence of pests and diseases is also low.

Yield as influenced by OFT

9. Feed back of the farmers involved:

- The farmers are not readily accepting the technology as it involves lot of labour, patience and there is no ready-made solution for all pest / disease problems and basically the fear of reducing yields due to non application of fertilizers.
- To some extent farmers were convinced that with no fertilizer regime, the incidence of pest and diseases itself will be low.

10. Feed back to the scientist who developed the technology:

On Farm Testing 9:

S.No	Item		Particulars
1	Thematic Area	:	Integrated Pest Management
2	Title	:	Management of pigeonpea pod borers with special
			reference to pod fly (Melanagromyzaobtusa).
3	Scientists Involved	:	D.Balaraju, SMS – Plant Protection
4	Details of Farming	:	Redgram crop is being cultivated both in Kharif under Rainfed
	Situation		Conditions in the selected village. The soils are black with
			medium to high P and K and low N content. Normal rainfall of this mandal is 600-630 mm, which is mostly received in SW
			Monsoon period especially from July to September. In case of
			necessity, the fields can be given supplemental irrigation, from
			near by SRBC Canal, that boosts the yields.
5	Problem	:	In Kurnool district, in recent times, pod fly assumed as a major
	definition/description		pest contributing to increasing losses in grain yield of Pigeonpea
			year by year. It was reported in Maharashtra that, with the
			advent of Bt cotton and its large scale cultivation the podfly assumed as important biotic constraint in increasing production
			and productivity in Pigeonpea and the damage by pod fly
			ranged from 25.5% to 36% (Anonymous 2008).
6	Technology assessed	:	Recommended module of Borer and Pod fly management in
			Redgram is assessed against indiscriminate use of pesticides
			followed by farmers.
			T1 – Farmers practice – Spraying New generation molecules
			starting from flowering till pod maturation at 15-20 days
			interval. Thus, 3 – 5 sprays are given depending on the duration
			of the crop.
			T2 – Recommended –
			Spraying of Neem oil (300 ppm) @ 5ml/lt at bud formation
			stage of the Crop.
			 Spraying chlorpyriphos @ 2.5 ml/lt or Acephate @ 1.5 g/lt at 50% flowering stage.
			Spraying Emamectin benzoate 5% @ 0.5g/lt +
			Thiomethoxam 25WG @ 0.25 g/lt 15 days after 2 nd spray
			andSpraying Flubendiamide 39.35% SC @ 0.25 ml/lt +
			Acetamaprid 20 SP @ 0.2 g/lt 15 days after 3 rd spray.
7	Critical Inputs given	:	✓ Neem oil 300 ppm @ 1 lt/ac = Rs. 300/ac
			✓ Acephate 75% SP @ 500 g/ac = Rs.300/ac
			✓ Emamectinbenzoate @100 g/ac = Rs. 600/ac.
			✓ Thiomethoxam 25 WG @ 40 g/ac = Rs. 175/ac
			✓ Flubendiamide 39.35% SC @ 50 ml/ac = Rs. 450/ac
			✓ Acetamaprid 20 SP @ 40 g/ac = Rs. 175/ac
			Critical inputs of worth Rs. 2000/- per ac or Rs. 5000/- per ha
			were provided to the trial farmers.

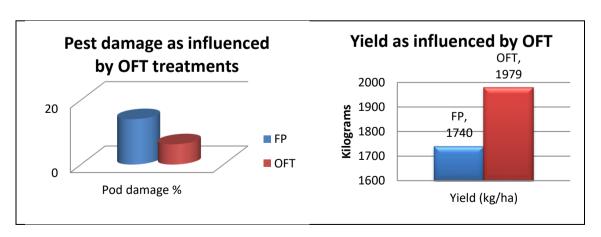

8. Results:

Table: Performance of the technology

Technology Option	No.of trials	Yield (t/ha)	Net Returns(Rs. lakh./ha)	B:C ratio	Data on Other performance indicators*
Farmers Practice: Spraying New generation molecules starting from flowering till pod maturation at 15-20 days interval. Thus, 3 – 5 sprays are given depending on the duration of the crop.	6	17.40	0.27	1.63	Pod damage – 14.1 %t Cost of PP – Rs. 8,125/ha
Technology 1: ✓ Spraying of Neem oil (300 ppm) @ 5ml/lt at bud formation stage of the Crop. ✓ Spraying chlorpyriphos @ 2.5 ml/lt or Acephate @ 1.5 g/lt at 50% flowering stage. ✓ Spraying Emamectin benzoate 5% @ 0.5g/lt + Thiomethoxam 25WG @ 0.25 g/lt 15 days after 2nd spray and ✓ Spraying Flubendiamide 39.35% SC @ 0.25 ml/lt + Acetamaprid 20 SP @ 0.2 g/lt 15 days after 3rd spray.		19.79	0.35	1.80	Pod damage - 6.3 % Cost of PP – Rs. 9,375/ha

Description of the results:

In addition to the farmers knowledge and adoption of spraying new generation chemicals viz., Emamectin benzoate, Flubendiamide starting from flowering in schedules of 15-20 days interval for management of pod borers, the farmers have added one conventional systemic insecticide in each spray to check the incidence of pod fly, which is normally observed from pod formation stage. With adoption of treatments in OFT, the farmers could effectively manage both the pests that resulted in less damage of pods and grains (55.6 % less damage).

9. Feed back of the farmers involved:

It is easy to adopt the package, as it needs only few combinations of chemicals to be sprayed compulsorily at flowering and pod initiation stages of the crop, which involves very less cost and gives better yield, by effective management of both pod borers and pod fly.

10. Feed back to the scientist who developed the technology:

On Farm Testing 10:

S.No	Item		Particulars
1	Thematic Area	:	Integrated Pest Management
2	Title	:	Integrated Management of Shoot fly and Stem borer in
			Jowar
3	Scientists Involved	:	D.Balaraju, SMS – Plant Protection
4	Details of Farming Situation	:	Jowar is being cultivated in late Kharif or Maghi Season, mostly under Rainfed Conditions in the selected village. The soils are light black with moderate P and K and low N content. Normal rainfall of this mandal is 550-600 mm, which is mostly received in SW Monsoon period especially from July to September.
5	Problem definition/description	:	In Kurnool district, shoot fly and stem borer are the regular pests occurring on Jowar. The farmers are not adopting recommended PP measures; hence the initial loss is more and leaving less plant population in the field which has direct bearing on yield.
6	Technology assessed		Recommended module of pest management for shoot fly and stem borer is assessed against indiscriminate use of pesticides followed by farmers. T1 – Farmers practice – Indiscriminate use of pesticides. T2 – Recommended – Increased seed rate @ 6 kg/ac Seed treatment with Imidacloprid @ 3 ml/kg seed. Spraying of Thiodicarb @ 1.5g/lt and Lambda Cyhalothrin 5% SC @ 2 ml/lt alternately at 7, 14 and 21 days after sowing. Whorl application of Carbofuron 3G @ 4 kg /ac at 30-35 DAS. T3 - Seed treatement with Imidacloprid @ 3 ml/kg + Chlorantraniliprole @ 0.3 ml/lt at 15 DAS.
7	Critical Inputs given	:	 Imidacloprid @ 50 ml /ac = Rs. 100/ac Thiodicarb @ 500 g/ac = Rs.500/ac Carbofuron@ 4 kg/ac = Rs. 400/ac. Chloranthraniliprole @ 60 ml/ac = Rs. 800/ac Critical inputs of worth Rs. 1800/- per ac or Rs. 4500/- per ha were provided to the trial farmers.

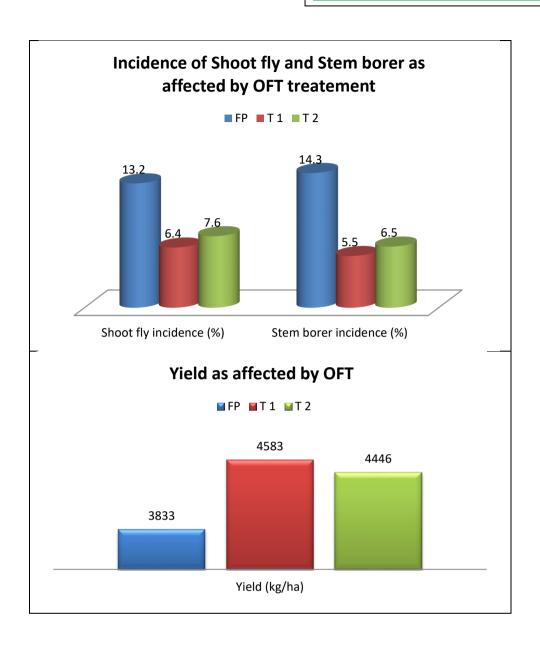

8. Results:

Table: Performance of the technology

Technology Option	No.of trials	Yield (t/ha)	Net Returns(Rs. lakh./ha)	B:C ratio	Data on Other performance indicators*
Farmers Practice : Indiscriminate use of pesticides.	6	38.33	0.14	1.34	Shoot fly - 13.2 % Stem borer - 14.3 % Cost of PP - Rs.4,125/ha
 Technology 1: Increased seed rate @ 6 kg/ac Seed treatment with Imidacloprid @ 3 ml/kg seed. Spraying of Thiodicarb @ 1.5g/lt and Lambda Cyhalothrin 5% SC @ 2 ml/lt alternately at 7, 14 and 21 days after sowing. Whorl application of Carbofuron 3G @ 4 kg /ac at 	treatment with cloprid @ 3 ml/kg ing of Thiodicarb @ lt and Lambda othrin 5% SC @ 2 ml/lt nately at 7, 14 and 21 after sowing.		0.26	1.66	Shoot fly -6.4 % Stem borer - 5.5 % Cost of PP - Rs.2,875/ha
30-35 DAS. Technology 2: Seed treatementwith Imidacloprid @ 3 ml/kg + Chlorantraniliprole @ 0.3 ml/lt at 15 DAS.		44.46	0.25	1.62	Shoot fly = 7.6 % Stem borer = 6.5 % Cost of PP = Rs.2,450/ha

Description of the results:

Seed treatement with Imidacloprid followed by Spraying of Thiodicarb and Lambda Cyhalothrin at weekly intervals for shoot fly management and whorl application of Carbofuron 3 G granules at 30 DAS for stem borer management has given better plant stand and better yield compared to farmers practice and other treatement where Seed treatement followed by Spray of Rynaxypyr at 15 DAS was taken up.

9. Feed back of the farmers involved:

 Farmers were convinced about the seed treatment with Imidacloprid followed by spraying with Rynaxypyr or whorl application of Carbofuron as these could greatly reduce the incidence of both shoot fly and stem borer.

10. Feed back to the scientist who developed the technology:

On Farm Testing 11:

S.No	Item		Particulars			
1	Thematic Area	:	Varietal Selection and Integrated Disease Management			
2	Title	:	Assessing the Performance of different varieties of Blackgram			
			against YMV.			
3	Scientists Involved	:	D.Balaraju, SMS – Plant Protection			
4	Details of Farming	:	Blackgram crop is being cultivated both in Kharif (as intercrop with			
	Situation		redgram) and Rabi Seasons, both under Rainfed and Irrigated			
			Conditions in the district. It is mostly grown in Black soils with			
			moderate P and K and low N content. Normal rainfall of the area of			
			blackgram is 600-630 mm, which is mostly received in SW Monsoon			
			period especially from July to September.			
5	Problem	:	In Kurnool district, the major diseases of Blackgram occurring			
	definition/description		regularly are YMV, powdery mildew and leaf spots. YMV can cause			
			damage more than 50% in severe cases.			
6	Technology assessed	:	Various varieties released in recent times by different universities			
			for YMV tolerance are being tested.			
			T1 – Farmers practice – LBG 752			
			T2 – PU 31			
			T3 – MASH 338			
			Management of whitefly with yellow sticky traps and need based			
			pesticide sprays.			
7	Critical Inputs given		Cost of 8 kg seed (4 kg of PU 31 and 4 kg of MASH 338 per			
			beneficiary to cover 0.4 ha) @ 200/- per kg. = Rs.1600/- per ac.			
			 Yellow sticky traps @ 20/ac = Rs. 300/ac 			
			Critical inputs (Seed) of worth Rs. 1900/- per ac or Rs. 4,750/- per ha			
			were provided to the trial farmers.			

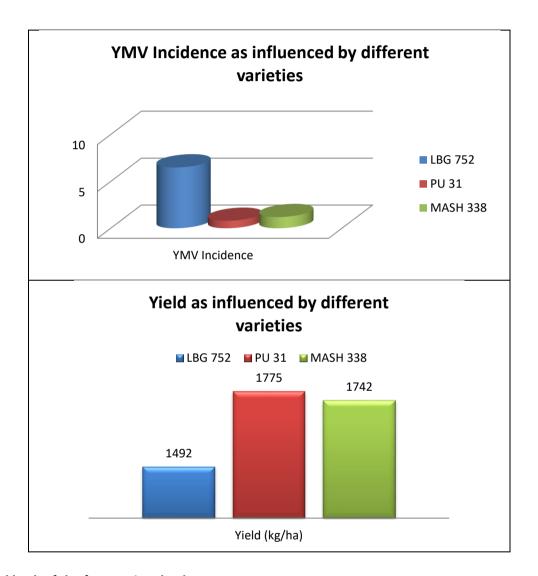

8. Results:

Table: Performance of the technology

Technology Option	No.of trials	Yield (t/ha)	Net Returns(Rs. lakh./ha)	B:C ratio	Data on Other performance indicators*
Farmers Practice : LBG 752	6	14.92	0.28	1.76	YMV - 6.5% Cost of PP -
Today to A		47.75	0.42	2.45	Rs. 10,625/ha.
Technology 1: PU 31 + Mgmt. of whitefly (Yellow sticky traps @ 20/ac and spray of Acetamaprid or Triazophos).		17.75	0.42	2.15	YMV — 0.8% Cost of PP — Rs. 9,50 0/ha
Technology 1: MASH 338 + Mgmt. of whitefly (Yellow sticky traps @ 20/ac and spray of Acetamaprid or Triazophos).		17.42	0.40	2.11	YMV - 1.2 % Cost of PP - Rs. 9,500/ha

Description of the results:

Both the varieties of Blackgram viz., PU 31 and MASH 338 outperformed the variety LBG 752 being sown by farmers, with regard to incidence of YMV as well as yield. The yields obtained in PU 31 and MASH 338 were 1775 kg/ha and 1742 kg/ha respectively which are higher than the yield of variety LBG 752 (Farmers practice). Almost negligible incidence of YMV is noticed in the introduced varieties, which is better than that of LBG 752.

9. Feed back of the farmers involved:

 The farmers have accepted both the varieties PU 31 and MASH 338 and now they are widely cultivating these varieties, in preference to LBG 752 which showed YMV incidence and leaf crinkle virus incidence.

10. Feed back to the scientist who developed the technology:

On Farm Testing 12:

1	Thematic area	:	Feed and fodder technology
2	Title	:	Evaluation of different feed formulations
			using agricultural by-products.
3	Scientists involved	:	A.Krishna Murthy, SMS (AH)
4	Details of farming situation:	:	Under irrigated black soils, Ground nut, Black
			gram and sunflower are cultivating in the
			district.
5	Problem definition / description: (one	:	Heavy wastage of valuable agricultural by-
	paragraph)		products was observed in Kurnool dist. These
			can be utilized in animals feeding to reduce the
			cost of concentrates.
6	Technology Assessed:	:	T ₁ – Rice Bran
			T ₂ –Black gram haulms (30%) + Concentrate
			feed (70%)
			T3- G.N.Haulms (30%) + Concentrate feed
			(70%)
7	Critical inputs given:	:	Concentrate feed @ 3kg / animal/day
8	Results	:	The results indicated that 16.9% increased milk
			yield in T2 over T1 and increase of 3.4% milk
			yield in T3 over T1.

Table: Performance of the technology

Technology Option	No.of trials	Avg. milk yield in 60 days	Net Returns (Rs. /animal)	В:С	Data on Other performance indicators*
Rice Bran		197.4	5289.00	1:4.3	
Black gram haulms (30%) +		228.6	6831.00	1:6.8	
Concentrate feed (70%)	5				
G.N.Haulms (30%) +		202.2	5727.00	1:5.2	
Concentrate feed (70%)					

Description of the results:

The trial was conducted to assess the three different feed formulae incorporating legume haulms to reduce the cost of concentrate feed and tested at 5 farmers. The results indicated that more milk yield recorded on feeding of 30% Black Gram haulms supplemented feed followed by GNH feed and Rice bran. There is no significant difference in the milk yield on feeding of GNH and BGH feeds.

- **9.Feed back of the farmers involved**: Palatability of the feed is less compare to regular concentrate feed.
- 10. Feed back to the scientist who developed the technology: Nil

On Farm Testing 13:

1	Thematic area	:	Nutrition management
2	Title	:	Supplementation of concentrate feed along
			with wet distillery grains to milch buffaloes
3	Scientists involved	:	A.Krishna Murthy, SMS (AH)
4	Details of farming situation:	:	Dairy farmers are feeding wet distillery grains as
			concentrate feed to milch buffaloes. As this is
			wet form, more prone to growth of mould and
			cannot preserve for more than 2 days.
5	Problem definition / description: (one	:	Farmers are feeding sole wet distillery grain as
	paragraph)		concentrates which is low in all essential
			nutrients. The protein and energy are not
			balanced which lead to metabolic disorders.
6	Technology Assessed:	:	T ₁ – Wet distillery grains (Farmers practice)
			T2- wet distillery grains (50%) + Concentrate
			feed (50%) (1:1)
7	Critical inputs given:	:	Concentrate feed @ 3kg / animal/day
8	Results	:	The results indicated that 10.16% increased
			milk yield was observed in the treatment over
			farmers practice.

Table: Performance of the technology

Technology Option	No.of trials	Avg. milk yield in 60 days	Net Returns (Rs. /lamb)	B:C ratio	Data on Other performance indicators*
Wet distillery grains (Farmers		378.0	9848.50	1:2.8	
practice)	5				
Wet distillery grains (50%) +	3	416.4	13142.75	1:4.2	
Concentrate feed (50%) (1:1)					

Description of the results:

The results indicated that 10.16% increased milk yield was observed in supplementation of 50% concentrate feed along with wet distillery grains over farmers practice on whole wet distillery grain feeding as concentrates.

9. Feed back of the farmers involved:

Well accepted technology by the farmers. Brewers waste was completely eliminated from the ration.

10. Feed back to the scientist who developed the technology: Nil

On Farm Testing 14:

1	Thematic area	:	Feed & Fodder technology
2	Title	:	Assessment of improved fodder variety Super
			Napier
3	Scientists involved	:	A. Krishna Murthy, SMS (AH)
4	Details of farming situation:	:	Under irrigated black and red soils, farmers
			allocate small area for fodder cultivation
			especially perennial fodder. Most of the
			varieties existing are old varieties and low
			yielders.
5	Problem definition / description: (one	:	Farmers cultivating CO-4 hybrid Napier variety
	paragraph)		which is spiny and have winter dormancy.
6	Technology Assessed:	:	T ₁ – CO-4
			T ₂ – Super Napier (CO-5)
7	Critical inputs given:	:	Fodder stem cuttings of CO-4 and CO-5 @ 10000
			cuttings per acre.
8	Results	:	The results indicated that 23.15% increased
			fodder yield in T2 over T1

Table: Performance of the technology

Technology Option	No.of trials	Fodder yield (t/ha)	% increase	Data on Other performance indicators*
CO-4	5	152.07	-	
Super Napier		187.27	23.15%	

Description of the results:

On the assessment of improved fodder variety, super Napier recorded 23.15% increased fodder yield over CO-4. Winter dormancy was not found CO-5 and also fewer spines were observed in CO-5 compared to CO-4.

9. Feed back of the farmers involved:

Milk improvement was found on feeding of super Napier and also it was easy for harvesting.

10. Feed back to the scientist who developed the technology: -

On Farm Testing 15:

1	Thematic area	:	Nutrition management
2	Title	:	Supplementation of bypass fat to milch
			buffaloes
3	Scientists involved	:	A. Krishna Murthy, SMS (AH)
4	Details of farming situation:	:	Dairy farming provides sustainable income to the farmers and the cost of milk production completely depends on concentrate feeding. Farmers are not having knowledge on scientific management of pregnant cows.
5	Problem definition / description: (one paragraph)	:	Neglect towards pregnant buffaloes resulted in negative energy balance soon after calving and resulting in low milk production.
6	Technology Assessed:	:	T ₁ - Farmers practice (concentrate feeding) T2- Concentrate feeding + Bypass fat @ 100g/day
7	Critical inputs given:	:	Bypass fat @ 100g / animal/day
8	Results	:	The results indicated that 23.13% increased milk yield was observed in the treatment over farmers practice.

Table: Performance of the technology

Technology Option	No.of trials	Avg. milk yield in 60 days	Net Returns (Rs. /lamb)	B:C ratio	Data on Other performance indicators*
Farmers practice (Concentrate		308.5	9144.50	1:3.9	
feeding)	10				
Concentrate feed + 100g Bypass	10	379.9	11429.0	1:3.2	
fat/day/animal					

Description of the results:

The results indicated that 23.13% increased milk yield was observed on supplementation of bypass fat along with regular concentrate feed over farmers practice. The improved peak milk yield resulted in increased lactation yield.

- **9. Feed back of the farmers involved:** Well accepted technology by the farmers.
- 10. Feed back to the scientist who developed the technology: Nil

On Farm Testing 16:

1	Thematic area	:	Nutrition management
2	Title	:	Feeding of balanced ration to milch buffaloes
			through ration balancing techniques.
3	Scientists involved	:	A. Krishna Murthy, SMS (AH)
4	Details of farming situation:	:	Dairy farming provides sustainable income to the farmers and the cost of milk production completely depends on concentrate feeding.
5	Problem definition / description: (one paragraph)	:	Over feeding resulted in heavy wastage of available feeding resources as well as increased cost of feeding. Imbalanced feeding leads to nutritional deficiencies.
6	Technology Assessed:	:	T ₁ – Farmers practice (regular feeding feeding) T2- Balanced feeding
7	Critical inputs given:	:	Concentrate feed and mineral mixture
8	Results	:	The results indicated that 20.44% increased milk yield was observed in the treatment over farmers practice.

Table: Performance of the technology

Technology Option	No.of trials	Avg. milk yield in 30 days	Net Returns (Rs. /lamb)	В:С	Body weight
Farmers practice (Regula feeding)	10	206.0	3863.00	1:2.4	
Balanced feeding		248.1	6322.80	1:3.13	

Description of the results:

The results indicated that 20.44% increased milk yield was observed on balanced feeding over farmers practice of regular feeding. The android application "Ration Formulator" developed by Sri Venkateswara Veterinary University, Tirupati was used to formulate the ration. The application found to very useful to the dairy farmers.

- **9. Feed back of the farmers involved:** Well accepted the technology by the farmers.
- 10. Feed back to the scientist who developed the technology: Nil

On Farm Testing 17:

S.No	Item		Particulars Particulars
1	Thematic Area	:	Drudgery Reduction
2	Title	:	Assessment of performance of Triple layer hermatic storage bags for storing of Rice, Redgram dhal & Jowar at household level
3	Scientists Involved	:	K.Lakshmipriya
4	Details of Farming Situation	:	-
5	Problem definition/description	:	In Cereals and pulses, post harvest loss occurs due to incidence of storage pests. In the villages farm women usually store their farm produce in conventional methods <i>i.e,</i> polyethelene bags/gunny bags. Due to this type of storing method, there is lot of storage losses and also more drudgery of farm women for repeated cleaning, drying and change of produce to other containers or bags.
6	Technology assessed	:	T1: Farmers Practice (Storing of produce in Polyethlene/Gunny Bags) T2: Storing of Rice in hermatic bags T3: Storing of Redgram dhal in hermatic bags T4: Storing Of Jowar in hermatic bags
7	Critical Inputs given	:	Triple layer hermatic storage bags@Rs60/-Bag

8. Results:

Observations	Farmers practice	Demo.						
Incidence of Storage Pest	Rice-4months	Rice-6months						
	Redgram-6months	Redgram-6months						
	Jowar-5months	Jowar-Under Progress						
Percentage of damaged grains	Under P	rogress						
Cost effectiveness	Rs.150/qt	Rs.60/-/bag						
Feed back of farm women about	nen about With the use of hermatic storage bags, pest incidence was							
storage in hermatic bags	not observed up to six month	ns. Drudgery was reduced on						
	frequent cleaning and storing o	f grains and it was recorded as						
	minimum. And it was also notic	ced that, for cleaning of grains						
	Rs.150/-/qt has to be paid a	as labour charges. One time						
	purchasing of triple layer hern	natic bags have longetivity for						
	storing of food grains and hel	ps to save amount on labour						
	charges on cleaning.							

Description of the results:

With the use of hermatic storage bags, pest incidence was not observed up to six months. Drudgery was reduced on frequent cleaning and storing of grains and it was recorded as minimum. And it was also noticed that, for cleaning of grains Rs.150/-/qt has to be paid as labour charges. One time purchasing of triple layer hermatic bags have longetivity for storing of food grains and helps to save amount on labour charges on cleaning.

9. Feed back of the farmers involved:

Farm women expressed that, with the use of hermatic bags reduced repetitive cleaning of grains thereby reduced drudgery and cost on labour for cleaning purpose.

10. Feed back to the scientist who developed the technology:- --

On Farm Testing 18:

S.No	Item		Particulars Particulars
1	Thematic Area	:	Drudgery Reduction
2	Title	:	Assessment of fertilizer dispenser for applying fertilizer in
			chillies to reduce drudgery of farm women
3	Scientists Involved	:	K.Lakshmipriya
4	Details of Farming Situation	:	Kharif/Irrigated/Black soils
5	Problem definition/description	:	 1.Farm women face lot of strain and body pains in applying fertilizers in agriculture operations by wrong postures 2. Farm women are not aware of improved implements for agriculture operations.
6	Technology assessed	:	T1 – Manual Application T2 – Application with fertilizer dispenser in chilli crop
7	Critical Inputs given	:	Fertilizer dispenser @Rs2000/-each

8. Results:

Observations	T1:Manual	T2: Applyingwith Fertilizer Dispensor		Remarks
Labour required/ac/crop period	16	12	•	Uniform distribution of
Cost Saving on labour for application of fertilizer/ac	Rs.2400/-	Rs.1800/-	•	fertilizer Avoids improper
Saving Of Fertilizer/Ac	-	Rs.2000/-	•	application Fertilizer use
Feed Back on work related Stress factors	drudgery was remoderate_than ma	of fertilizer dispensor ,the educed from minimum to anual application, which was derate to maximum.		efficiency is good due to application of correct qty. of fertilizer at root zone.

Description of the results:

Fertilizer Dispenser was introduced for applying fertilizer in chillies crop, labour saving was by 25% and cost on fertilizer by Rs.2,000/-. with the use of fertilizer dispenser, the drudgery was reduced from **minimum to moderate** than manual application, which was recorded from **moderate to maximum.** Fertilizer dispenser helps in Uniform distribution, proper application of fertilizer and improves efficiency fertilizer due to its application in root zone.

9. Feed back of the farmers involved:

Farm women expressed that, with the use of fertilizer dispenser, drudgery reduced than their regular practice but they need practice with dispenser.

10. Feed back to the scientist who developed the technology:-

- Dispenser handle contains ridges and it hinders smooth flow of the fertilizer during application
- Plain handle without any design may helps for smooth flow.

On Farm Testing 19:

S.No	Item		Particulars							
1	Thematic Area	:	Drudgery Reduction							
2	Title	:	Assessment of Performance of easy planter for transplanting tomato seedlings to reduce drudgery of farm women							
3	Scientists Involved	:	K.Lakshmipriya							
4	Details of Farming Situation	:	Kharif/Irrigated/Black soils							
5	Problem definition/description	:	 1.Farm women face lot of strain and body pains in transplanting operations 2. Farm women are not aware of improved implements for agriculture operations. 							
6	Technology assessed	:	T1-Manual Transplanting T2-Transplanting with easy planter							
7	Critical Inputs given	:	Easy planter @Rs2000/-each							

8. Results:

	T1:Manual	T2: Transplanting with planter				
Observations						
Labour required/ac for	6	3				
Transplantation						
Cost Saving on labour for	Rs.900/-	Rs.450/-				
Transplanting						
Feed Back on work related Stress	With the use of easy planter,	Cost saving on labour was 50%.				
factors	,	n minimum to moderate than				
	manual which was recorded fr	om moderate to maximum. Farm				
	women expressed that, they r	need practice for operation of the				
	implement.					

Description of the results:

With the use of easy planter, Cost saving on labour was 50%. Drudgery was reduced from **minimum to moderate** than manual which was recorded from **moderate to maximum.** Farm women expressed that, they needs practice for operation of the implement.

9. Feed back of the farmers involved:

Farm women expressed that, with the easy planter, drudgery reduced than their regular practice but they need practice of the implement.

10. Feed back to the scientist who developed the technology:-

- Cost of the implement
- The existing implement is more suitable for sandy, light soils only. This can be modified to suit to all types of soils for easy adoption.

3.d. FRONTLINE DEMONSTRATION

a. Follow-up of FLDs implemented during previous years

S.	Crop/			Details of popularization	Horizontal spread of technology				
No	Enterprise	Thematic Area*	Technology demonstrated	methods suggested to the	No. of	No. of	Area		
140				Extension system	villages	farmers	in ha		
1	Bengalgram	Varietal Evaluation	Varietal Demonstration in Bengalgram with Jaki-9218, digvijay and Nandyala sanaga-1	Demonstrations, Exposure visits, Field Days Seed village Concept	25	20000	50000		
2	Cotton and Paddy	Weed management	Post-emergence herbicides	Demonstrations, Exposure visits, Field Days, Seed village Concept	15	15000	55000		
3	Paddy	Resource conservation	Direct Seeding	Demonstrations, Exposure visits, and Field Days	10	120	300		
4	Paddy	Resource conservation	Zero tillage	Demonstrations, Exposure visits, and Field Days	8	200	300		
5	Seteria	Varietal Evaluation	Varietal Demonstration with Suryanandi	Demonstrations, Exposure visits, and Field Days	50	8000	15000		
6	Redgram Seteria	Cropping system	Redgram+ seteria Inter cropping System	Demonstrations, Exposure visits, and Field Days	35	5000	25000		
7	Redgram	Varietal Evaluation	Varietal Demonstration in Redgram-PRG-158 & LRG-41	Demonstrations, Exposure visits, Field Days Seed village Concept	50	6000	20000		
8	Rice	Soil testing	Soil testing crop response based nutrient application in rice	Demonstration, exposure visits, Field Days	30	855	4550		
9	Bt Cotton	IPM	IPM	Method Demonstrations, Exposure visits, and Field Days	14	360	1100		

10	Redgram	IPM	Realtime contingent mgmt. of	Village Action Plan meetings,	12	250	220
			pests & diseases	Rythu Chaitanya Yatras.			
				Trainings			
11	Bengalgram	IDM	Biopriming for soil borne disease	Method Demonstration,	25	450	600
			management	Rythu Chaitanya Yatras,			
				CFLDs, trgs.			
12	Brinjal	IPM	Mgmt of fruit & shoot borer	Exposure visit, Farmers	8	80	50
				trainings, trgs			
13	Onion	IPM	Thrips& Leaf blight	Training, Demonstration, RCY	10	150	140
14	Blackgram	IPM	Realtime contingent mgmt. of	Training, Demonstration,	15	230	200
			pest s & diseases	Village Action Plan Meetings.			
				RCY,CFLD			

b. Details of FLDs implemented during the current year (Information is to be furnished in the following three tables for each category i.e. cereals, horticultural crops, oilseeds, pulses, cotton and commercial crops.)

SI.	SI. No.	Thematic area	Technology Demonstrated	Season	Source of	Area (ha)		No. of farmers/ demonstration			Reasons for shortfall in
NO.				and year	funds	Proposed	Actual	SC/ST	Others	Total	achievement
1	Groundnut	ICM	Variety, STBF, Sucking	Kharif-		20	20	6	19	25	
			pest management	2017							
2	Castor	ICM	Variety, STBF, Sucking	Kharif-		20	20	6	19	25	
			pest management	2017							
3	sunflower	ICM	Spacing and micro	Rabi-		40	40	6	44	50	
			nutrient	2017							
4	Rabi	ICM	Variety, STBF, Sucking	Rabi-		20	20	5	25	30	
	groundnut		pest management	2017							
5	Sesame	ICM	Variety, STBF, weed	Rabi-		40	40	10	40	50	
			management	2017							

Othe	er Demonstratio	ns									
SI. No.	Crop	Thematic area	Technology Demonstrated	Season and year	Source of	Area (dem	of farme	n	Reasons for shortfall in
					funds	Proposed	Actual	SC/ST	Others	Total	achievement
6	paddy	Weed	Herbicides+ Manual	K-2017		4	4	4	6	10	
		management	weeding								
7	Paddy	Crop	Semi dry Rice	K-2017		4	4	3	7	10	
		Establishment	cultivation								
8	Seteria-	Cropping	ICM	K-2017		4	4	4	6	10	
	Bengalgram	sequence		R-2017							
9	Bt cotton	Crop	spacing	K-2017		4	4	3	7	10	
		geometry									
10	Blackgram	Direct	Herbicides+ Manual	R-2017		4	4	4	6	10	
		seeding	weeding								
11	Bengalgram	Mechanical	-	R-2017		4	4	4	6	10	
		harvesting									
12	Cotton	Nutrient	Soil test based nutrient	Kharif-	KVK	4	4	3	7	10	
		management	management	2017							
13	Chilli	Nutrient	Soil test based nutrient	Kharif-	KVK	4	4	3	7	10	
		management	management	2017							
14	Bengalgram	Nutrient	Sulphur and Zinc	Rabi-	KVK	4	4	3	7	10	
		management	management	2017		-					
15	Maize	Nutrient	Zinc management	Rabi-	KVK	4	4	3	7	10	
		management		2017							
16	Bt Cotton	IPM	Sucking pest management	K 2017	ICAR	4.0	4.0	3	7	10	
17	Chilli	IDM	Viral disease management	K 2017	ICAR	4.0	4.0	2	8	10	
18	Chilli	IDM	Mgmt of root rot	K 2017	ICAR	4.0	4.0	2	8	10	
19	Rice	IDM	Mgmt.of blast and sheath	K 2017	ICAR	4.0	4.0	1	9	10	
			blight								
20	Rice	IPM	Mgmt of stem borer	R 2017	ICAR	4.0	4.0	2	8	10	

Details of farming situation

Crop	Season	Farming situation	Soil type	cro		Previous crop	Sowing date	Harvest date	Seasonal rainfall	No. of rainy	
		(RF/Irrigated)		N	Р	K				(mm)	days
Groundnut	Kharif- 2017	Rainfed	Red soil	L	Med	High	Jowar	2 nd week of July	Last week of october		
Castor	Kharif- 2017	Rainfed	Red soil	L	Med	High	Jowar	3 rd week of July	Last week of December		
sunflower	Rabi-2017	Irrigated	Black soil	L	High	High	Jowar	2 nd week of oct	Last week of Jan		
Rabi groundnut	Rabi-2017	Irrigated	Red soil	L	Med	High	B.gram	Last week of Dec	1 st week of April		
Sesame	Rabi-2017	irrigated	clayloam	L	Med	High	paddy	Last week of Jan	Last week of April		
Other Demo	nstrations										
paddy	Kharif- 2017	irrigated	Black soil	L	M	High	Jowar	2 nd week of sep	2 nd Week of Dec		
Paddy	Kharif- 2017	irrigated	M.Black soils	L	М	М	Chillies	1 st week of August	Last Week of January		
Seteria- Bengalgra m	Kharif- 2017 Rabi-2017	Rainfed	Clay loam	L	М	M	Blackgr am	2 nd week of july	2 nd Week of Dec		
Bt cotton	Kharif- 2017	Rainfed	Black soil	L	Н	Н	Jowar	3 nd week of July	3 rd week of January		
Blackgram	Rabi-2017	irrigated	Black Soil	L	Med	High	Jowar	2 nd week of Nov	2 nd Week of Feb		
Bengalgra m	Rabi-2017	Rainfed	Black Soil	L	Med	High	Jowar	2 nd week of October	1st Week of Feb		

Bt.cotton	Kharif-17	I/D	Black	L	Med	Mediu	Jowar	Last week	Last picking	
			soil		ium	m to		of July	3 rd week of	
						high			January	
Chilli	Kharif-17	I/D	Black	L	High	Mediu	Maize	2 nd to 3 rd	Last week	
			soil			m to		week of	of February	
						high		August.		
Bengalgram	Rabi-17	Rainfed	Black	L	M	Mediu	Bengalg	^{3rd} week	3 rd week	
					to H	m to	ram	of Oct.	of Jan.	
						high				
Maize	Rabi-17	Irrigated	Black	L	High	Mediu	Paddy	2 nd to 3 rd	Last week of	
						m to		week of	April	
						high		January.		
Bt Cotton	Kharif- 2017	Irrigated	Black	L	M	Н	Chillis	4 th week of	2nd wk of Feb	
			Cotton soil					July		
Chilli	Kharif- 2017	Irrigated	Black	L	M	Н	Cotton	1 st wk of Sep	1 st wk of Mar	
			Cotton soil							
Chilli	Kharif- 2017	Irrigated	Black	L	M	Н	Cotton	1 st wk of Sep	1 st wk of Mar	
			Cotton soil							
Chilli	Kharif 2017	Irrigated	Black	L	M	Н	Jower	2 nd wk of Sep	3 rd wk of Mar	
			Cotton soil							
Rice	Kharif- 2017	Irrigated	Black	L	M	Н	Rice	2 nd wk of Sep	4 th wk of Jan	·
			Cotton soil							
Rice	Rabi -2017	Irrigated	Black	L	M	Н	Rice	2nd wk of Feb	3rd wk of May	
			Cotton soil							

Technical Feedback on the demonstrated technologies Agronomy:

S. No	Feed Back							
1	Cost on manual weeding was reduced (Rs 950/- per ha)							
	Weed control efficiency was 82-86.0Per cent							
	Weed density was less in demo plot up to critical periods							
2	Semi dry method of Rice cultivation:							
	Reduced cost of cultivation as compared to transplanting(Labour, Puddling costs)							
	Reduced seedr ate (8-12 KG /acre as against 30kg /acre)							
	Saves 35-40 per cent water.							
	Reduced fertilizers and pesticides uses							

Soil Science

S. No	Feed Back
1	Soil test based nutrient management and foliar application of K,Mg,Zn and B would improve the productivity of Bt.cotton
2	Cost reduction on chemical fertilisers was observed in demonstration plots
3	STCR based nutrient management helped in cost reduction on chemical fertilizers.
4	Productivity enhancement due to application of sulphur and zinc in respective nutrient deficient soils

Plant Protection

S. No	Feed Back
1	Bt Cotton: Stem application with Mono and Imida at 20,40 and 60 DAS is effective than spraying the same for sucking pest management.
2	Chilli: Seed treatment with TSOP and Imida followed by installation of Yellow sticky traps for white fly management will be better for management
	of viral disease complex.
3	Chilli : Soil application of Trichoderma and Pseudomonas @ 1 kg each mixed with 100 kg FYM and 10 kg Neem cake (after incubation) will be
	better for management of root rot.
4	Spraying Tricyclazole on early detection of Blast symptoms could manage blast most effectively, without much damage to the crop.
5	Pinching off the tips of seedlings while transplanting, application of Cartap 4G @ 8kg/ac are better for management of YSB.

Farmers' reactions on specific technologies Agronomy

S. No	Feed Back
1	Groundnut:
	The Groundnut variety Dharani is fairly tolerant to moisture stress than K6.
	❖ Farmers were more impressed with performance of Dharani variety.
	Incidence of sucking pest is less in Dharani variety.
	Dark green foliage with less vegetative growth than K6 variety
2	SunFlower:
	No significant difference in duration of sunflower hybrids cultivated by farmers.
	Due to adoption of 60cm spacing between the rows and practicing thinning at 10-15DAS crop was not affected with moisture stress.
	❖ Basal application of P in form of SSP & boron spray @ 0.2% had positive effect on seed filling & test weight
3	Sesame:
	The sesame variety YLM-66 is fairly tolerant to phyllody.
	Farmers were more impressed with performance of YLM-66 during summer after rice.
	Dark green foliage with more no of branches/plant

Soil Science

S. No	Feed Back
1	Farmers were satisfied with crop performances and expressed that Soil test based nutrient management is a viable technology in Bt.cotton,
	because of less cost of chemical fertilizers and without reduction in yield compared to their own practice. They realized that they are resorting to
	higher expenditure on fertilizers in absence of soil testing of their fields. They are now willing to adopt STBR technology in succeeding seasons for
	raising crops. Pest incidence was less in demonstration plots than farmers practice fields.
2	Farmers were satisfied with crop performances and expressed that Soil test based nutrient management is a viable technology in chilli, because of
	less cost of chemical fertilizers and without reduction in yield compared to their own practice. They realized that they are resorting to higher
	expenditure on fertilizers in absence of soil testing of their fields. They are now willing to adopt the STCR technology in succeeding seasons for
	raising crops. Pest incidence was less in demonstration plots than farmers practice fields.
3	Need based application of Sulphur and zinc is more essential for bengalgram yield increments.
4	Application of Zinc is required to enhance yield of maize.

Plant protection

S. No	Feed Back
1	Stem application in Bt cotton is useful for management of sucking pests and it is cheap.
2	Seed treatment with TSOP and Imida gave good control of virus disease in Chillis compared to continuous spraying of different chemical pesticides.
3	Timely spraying of Tricyclazole and Propiconazole effectively controlled the blast and sheath blight disease in rice.
4	Root rot in Chillis is better managed by Soil application of Trichoderma and Pseudomonas than drenching with COC and sprayings of systemic
	fungicides.

Horticulture

S. No	Feed Back
1	With use of portray raised chilli seedlings, the establishment and growth of chilli crop was vigorous with more foliage and profuse branching and
	more flowers and pods.
2	As the plant growth and development is good, crop showed good resistance and hence low incidence of pests and diseases was observed.

Extension and Training activities under FLD

Sl.No.	Activity	No. of activities organised	Date	Number of participants	Remarks
1	Field days	2	17-10-2017 3-1-2018	72 98	
		2		326	
2	Farmers Training	6	1.7.2017 20.8.2017 15.9-2017 15.11.2017 18.1.2018 20.2.2018	25 25 30 30 50 50	
		4		106	
4	Training for extension functionaries	1	22-12.2017 18-1.2018	50	
		1		25	

Performance of Frontline demonstrations

Frontline demonstrations on crops

	Thematic Area	technology	Name of the V Hybrid	••		Area . (ha)		Yield	l (q/ha)		%	Econ	omics of d (Rs./		ation	Economics of check (Rs./ha)				
Crop		demonstrated	Domo	Check				Demo		Check	Increase in vield	Gross	Gross	Net	BCR	Gross	Gross	Net	BCR	
							High	Low	Average	спеск	in yieid	Cost	Return	Return	(R/C)	Cost	Return	Return	(R/C)	
Pulses																				
Blackgram	Weed management	Post-emergence application of acflorofen+cladino pop propajil@750 ml/ha	TBG-104	TBG-104	10	4	1856	1560	1677	1535	9.25	30150	75465	45315	2.50	31375	69075	37700	1:2.5/2.2	
Setaria- Bengalgram	Cropping system	Doubble cropping	Suryanandi/ Nandyalasanaga- 1	Nandyala sanaga-1	10	4	1589/ 1250	1236/ 925	1441/ 1057	1174	-	40550	69564	29014	1.71	30450	51656	21206		
Bengalgram	Nutrient Management	Sulphur and zinc management	NS-1	NS-1	10	4	14.5	12.1	13.49	11.66	15.69	33496	53960	20464	1:1.62	31746	46640	14894	1:1.48	
Cereals																				
Paddy	Crop establishment	Semidry cultivation	BPT-5204	BPT- 5204	10	4	7487	7150	7314	7195	1.65	54857	141379	40478	2.57	62375	139079	76704	1:2.5/2.2	
Paddy	Weed management in directed seed rice	Directed seed Rice	BPT-5204	BPT- 5204	10	4	7387	7050	7254	7165	1.24	52857	140219	87362	2.65	64375	138499	74124	1:2.65/2.15	
Maize	Nutrient Management	Zinc management	Private hybrid	Private hybrid	10	4	82.0	75.6	78.6	71.4	10.15	50580	82520	31940	1:1.63	48580	74918	26338	1:1.54	
Rice	IDM	Mgmt of Blast and Sheath Blight	BPT 5204	BPT 5204	10	4.0	6125	5350	5494	4988	10.14	59,125	1,09,880	50,755	1.86	61,000	99,760	38,760	1.64	
Rice	IPM	Mgmt of yellow stem borer	555	555	10	4.0														

Commercial																			
crops																			
Bt cotton	Crop geometry	Spacing	Swapna Bt	Swapna Bt	10	4	3362	3047	3200	2860	11.88	51375	168000	116625	44.05	49750	150150	100400	1:3.27/3
Bt.Cotton	Nutrient Management	INM	Jadhu Bt.	Jadhu Bt.	10	4	39.85	33.25	35.63	33.28	7.06	51316	195965	126834	1:3.49	51316	183035	110747	1:2.99
Bt Cotton	IPM	Management of sucking pests	Nuziveedu	Nuziveedu	10	4.0	2950	2175	2613	2348	11.3	64,650	1,07,133	42,483	1.66	64,365	96,268	31,903	1.50
Chilli	IPM	Management of Viral disease complex	Super 10	Super 10	10	4.0	5460	4875	5120	4503	13.71	325488	419840	94352	1.29	312638	369246	56608	1.18
Chilli	IDM	Management of root rot	Super 10	Super 10	10	4.0	4420	3650	4025	3670	9.67	281125	330050	48925	1.17	265600	300940	35340	1.13
Chilli	ICM	Portray healthy seedlings, yellow sticky traps	Super 10	Super 10	10	4	6520	5230	5475	4670	17.23	323543	448950	125407	1.39	314532	382940	68408	1.22
Spices and condiments																			
Chilli	Nutrient Management	STCR based Nutrient Mangmt.	Super-10	Super-10	10	4	51.50	36.50	42.22	41.46	1.80	167565	401043	233478	1:2.39	183587	393889	212038	1:2.15

FLDs conducted with the funding of other sources including CFLD/ATMA/NABARD/other ICAR institutes etc

	Source of fund			1	of the / Hybrid				Yi	eld (q/ha)		0/ 1-	Econor	nics of der (Rs./ha		on	Economics of check (Rs./ha)				
Crop		Thematic Area	technology demonstrated	Domo	Check	No. of Farmers	Area (ha)		Den	10		% Increase in yield	Gross	Gross	Net	BCR	Gross	Gross	Net	BCR	
		Aica	uemonstruteu				High	Low	Average	Check	,	Cost	Return	Return	(R/C)		Return	Return	(R/C)		
Groundnut	NMOOP	ICM	Variety, STBF, Sucking pest managem ent	Dharani	Rainfed	25	20	15.8 8	13.0 5	14.13	11.76	20.15	47375	66585	19210	01:4 0	45300	55920	10620	01:0 1.2	
Kharif Castor	NMOOP	ICM	Variety, STBF, Micronutri ent	PCH-111	Rainfed	25	20	14.6 2	11.1 2	13.08	10.85	20.55	18255	47102	28847	2.58	20680	39060	18380	1.8	
Rabi Groundnut			Rabi	Dharani	Irrigated	25	20	24.5 5	23.3 8	23.76	20.84	14.01	44623	89100	44477	2.0	43118	78150	35032	1.81	
Sunflower	NMOOP	ICM	Spacing and micro nutrient	NDSH- 1012	Rainfed	25	20	13.5	9.75	11.98	9.31	28.67	22254	41937	19683	1.88	21010	32588	11577	1.55	
				NDSH- 1012	Irrigated	25	20	22.7 5	18.2	20.78	16.35	27.09	28074	72736	44662	2.59	29778	57218	27685	1.9	
Sesame	NMOOP	ICM	Variety, STBF, weedmana gement	YLM-66	Non- specified	50	40	14.3 7	9.50	11.87	9.86	20.38	23378.2	65285	41906. 8	2.79	27227.3	54230	27002. 7	1.99	
Greengram	NFSM	ICM	Variety + IPM	WGG 42	NS	7	5.6	812	650	748	679	10.16	22,300	32,164	9,864	1.38	23,250	29,197	5,940	1.26	
Redgram	NFSM	ICM	Vareity + IPM	PRG 176	ICPL 87119	50 (ID)	20	1875	125 0	1553	1640	-5.3	35,975	83,862	47,887	1.33	34,525	88,560	54,035	2.57	
						39 (Int.crp-RF)	16.0			755	640	17.96	32,875	40,770	7,895	1.24	29,425	34,560		1.17	
						10 (RF)	4.0	1000	750	850	730	16.4	33,475	45,900	12,425	2.33	30,025	39,420	9,395	1.57	
Blackgram (K-2017)	NFSM	ICM	Variety + IPM	TBG 104	PU 31	17 (ID)	13.6	1062	700	910	750	21.3	25,760	36,400	10,640	1.41	23,925	30,000	6,075	1.25	
						8 (RF as	6.4	750	580	679	620	9.51	32910	58480	25570	1.78	31,625	56,120	24,495	1.77	
Blackgram (R-2017)				LBG 787	PU 31	in.cr. in Rg) 13 (ID)	10.4	1625	112 5	1352	1750	-22.7	(blg+rg) 28,388	blg+rg 60,840	blg+rg 32,452	2.14	blg+rg 30,875	blg+rg 78,750	blg+rg 47,875	2.55	
				TBG 104	PU 31	13 (ID)	9.6	2125	162 5	1940	1750	10.86	28,388	87,300	58,912	3.08	30,875	78,750	47,875	2.55	

Bengalgra	NFSM	ICM	Vareity + IPM	NS 1	JG 11	8 (ID)	6.4	1875	165	1800	1688	6.60	36,375	72,000	35,625	1.98	37,125	67,520	30,395	1.82
m									0											
						7 (RF)	5.6	1375	100	1196	1125	6.31	34,375	47,840	13,465	1.39	35,125	45,000	9,875	1.28
									0											
				NBeG 49	JG 11	24 (ID)	19.2	2000	150	1760	1688	4.30	36,375	70,400	34,025	1.93	37,125	67,520	30,395	1.82
									0											
						11 (RF)	8.8	1500	100	1261	1125	12.1	34,375	50,440	16,065	1.47	35,125	45,000	9,875	1.28
									0											

Groundnut

In groundnut variety, Dharani with Improved production technologies (Improved variety, seed treatment, Soil test based fertilizer application, and IPM measures against sucking pest) gave higher grain yield (1413Kg/ha), which was 20.15 per cent than that of obtained with farmers practice yields of 1176 Kg/ha in red soils under rainfed situation.

Castor

- In Castor hybrid PCH-111 with Improved production technologies (Improved variety, seed treatment, Soil test based fertilizer application, and IPM measures against botrytis) gave higher grain yield (1308Kg/ha), which was 20.5 per cent than that of obtained with farmers practice yields of 10856 Kg/ha in red soils under rainfed situation
- The Economic Viability of improved technology over farmers practice was calculated depending on prevailing prices of input and output costs. The improved technologies resulted increased income with cost benefit ratio of 1:2.58/1.89

Sunflower:

The results indicated that sunflower hybrid NDSH-1012 with Improved production technologies (seed treatment, Soil test based fertilizer application, spacing and thinning at 10-15 DAS, application of Boron @0.2% and sucking pest management) gave higher yield (11.98/ha), which was 28.6 per cent than that of farmers practice (9.31 q/ha in black soils with protective irrigation). The Hybrid NDSH-1012 gave higher grain yield (20.78/ha), which was 27.0 per cent higher than that of farmers practice under Irrigated condition.

Rabi Groundnut:

During Rabi Groundnut variety, Dharani with Improved production technologies (Improved variety, seed treatment, Soil test based fertilizer application, Foliar spray of Zn and IPM measures against Sucking pest management) gave higher Pod yield (23.76q/ha), which was 18.56 per cent than that of farmers practice (20.84 q/ha). The increased pod yield with Improved production technologies was mainly because of more no of pods/plant and higher 100 Kernal and Shelling percentage (14.0).-

Sesame:

- The results indicated that sesame variety with Improved production technologies (Improved variety, Pre-emergence application of pendimethalin @ 2.5 lit/ha, Soil test based fertilizer application, thinning at 10-15 DAS, and sucking pest management) gave higher yield (11.87q/ha), which was 28.0 per cent than that of farmers practice (9.86 q/ha) in black soils under Irrigated condition.
- > The economic viability of improved technology over farmers practice was calculated depending on prevailing prices of input and output costs. The improved variety with improved technologies resulted increased income with cost benefit ratio of 1:2.79/1.99.

FLD on Livestock

Category	Thematic	Name of the	No. of	No.of Units			%			Econo	mics of d	emonstr	ation	Ec	onomics	of check	
	area	technology	Farmer			·	change		· · ··································		(Rs	; .)	7		(Rs.	,)	
		demonstrated		Poultry/ Birds, etc)	Demo	Check	in major parameter		Check	Gross Cost	Gross Return	Net Return	BCR (R/C)	Gross Cost	Gross Return	Net Return	BCR (R/C)
Sheep	Animal nutrition management	Creep feed supplementation to pre weaned lambs	10	50	6.54	4.84	35.12	-	-	180.00	1308.00	1128.00	7.27	150.00	968.00	818.00	6.45
Dairy	Feed and Fodder technology	Feeding of Hydroponic Maize fodder to milch buffaloes	5	10	162.0	147.9	11.93	-	-	930.00	8358.00	7428.40	8.98	1240.00	7081.00	5841.80	5.71
Sheep	Feed Management	Supplementation of 50%GNH feed to post weaned ram lambs	10	50	6.98	5.64	23.75	-	-	337.50	1745.00	1407.50	5.17	337.50	1407.50	1072.50	4.18
Cattle	Animal nutrition management	Supplementation of Selenium and Vit E	14	14	14	8	57.14	-	-	_	-	-	-	-	-	-	-

FLD on Women Empowerment

Category	Name of technology	No. of demonstrations	Name of observations	Demonstration	Check
Drudgery Reduction	Cotton Hand Gloves	30	Feed back on work related stress factors presented in a separate table	With the introduction of cotton hand gloves for Green Fodder harvesting, the farm women protects hands from scratches, itching and irritation caused while harvesting of green fodder and drudgery was recorded as minimum.	Green fodder harvesting with bare hands causes itching and irritation and drudgery was recorded as moderate to max
Drudgery Reduction	Hand Cultivators	5	Labour required/ac/crop period	36	45
			Reduction on Cost on weeding/ac	Rs.4320/-	Rs.5400/-
			Feed Back on work related Stress factors	with the use of hand cultivator, weeding cost was reduced by Rs.1,080/ac and the drudgery was recorded from minimum to moderate than manual weeding which was recorded from moderate to maximum.	With manual weeding drudgery was recorded from moderate to maximum.
Drudgery Reduction	Three Pronged Wheelhoe	5	Labour required/ac/day	5	15
			Reduction on Cost on weeding/ac	Rs.750	Rs.2250/-
			Feed Back on work related Stress factors	With three pronged Wheel hoes for weeding in groundnut crop, cost on weeding was reduced by Rs.1500/- /ac and drudgery_was recorded as moderate than manual weeding which was recorded from moderate to max Farm women expressed that they need practice for easy operation of the implement.	With manual weeding drudgery was recorded and it is ranged from moderate to maximum.
Drudgery Reduction	Cycle weeders	5	Labour required/ac/day	6	15
			Reduction on Cost on weeding/ac	Rs.900/-	Rs.2250/-
			Feed Back on work related Stress factors	With Cycle weeders for weeding in Tomato crop, cost on weeding was reduced by Rs.1350/- /ac and drudgery was recorded as moderate than manual weeding which was recorded from moderate to max Farm women expressed that they need practice for easy operation of the implement.	With manual weeding drudgery was recorded and it is ranged from moderate to maximum.

4. Training Programmes

Farmers' Training including sponsored training programmes (on campus)

Thematic area	No. of				l	Participant	S			
	courses		Others			SC/ST			Grand Tota	I
		Male	Female	Total	Male	Female	Total	Male	Female	Total
I Crop Production										
Weed Management	2	80	-	80	20	-	20	100	-	100
Cropping Systems	1	19	-	19	6	-	6	25	-	25
Micro Irrigation/irrigation	1	25	-	25	5	-	5	30	-	30
Seed production	1	15	-	15	3	-	3	18	-	18
Integrated Crop Management	3	76	4	80	28	-	28	108	4	112
Total	8	215	4	219	62		62	281	4	285
III Soil Health and Fertility										
Management										
Integrated Nutrient										
Management										
Production and use of organic										
inputs	3	46	34	80	21	13	34	63	51	114
Management of Problematic]									
soils	1	18	-	18	7	-	7	25	-	25
Micro nutrient deficiency in	1	11	10	21	3	1	4	14	11	25
crops										
Balance use of fertilizers	1	24	-	24	6	-	6	30		30
Soil and Water Testing	1	19	-	19	6	-	6	25	-	25
Total	7	118	44	162	43	14	57	157	62	219
IV Livestock Production and										
Management										
Dairy Management	1	14		14	4		4	18		18
Animal Nutrition		14	6	20	8	2	10	22	8	30
Management	1									
Feed & fodder technology	2	42		42	4		4	46		46
Others (pl specify) -										
Integrated farming										
systems	2	22	2	24	8	3	11	30	5	35
Total	6	92	8	100	24	5	29	116	13	129
V Home Science/Women										
empowerment										
Household food security by										
kitchen gardening and										
nutrition gardening	2		63	63		20	20		83	83
Design and development of										
low/minimum cost diet	1		24	24		7	7		31	31
Women and child care	1		21	21		9	9		30	30
Total	4	0	108	108	0	36	36	0	144	144
VII Plant Protection										
Integrated Pest Management	15	352	12	364	48	0	48	400	12	412
Bio-control of pests and										
diseases	1	19	16	35	4	3	7	23	19	42
Total	16	371	28	399	52	3	55	423	31	454
GRAND TOTAL	41	796	192	988	181	58	239	977	254	1231

Farmers' Training including sponsored training programmes (off campus)

Farmers' Training including sponsored training programmes (off campus)

Thematic area	No. of											
	courses		Others			SC/ST		(Grand Tota	ıl		
		Male	Female	Total	Male	Female	Total	Male	Female	Total		
I Crop Production												
Weed Management	2	50	-	50	10	-	10	60	-	60		
Resource Conservation												
Technologies	1	40	-	40	5	-	5	45	-	45		
Crop Diversification	1	35	-	35	15	-	15	50	-	50		
Integrated Crop Management	4	140	-	140	38	-	38	178	-	178		
Others (pl specify) – Fodder												
Production	1	45	-	45	5	-	5	50	-	50		
Total	9	310		310	73		73	383		383		
III Soil Health and Fertility												
Management												
Integrated Nutrient												
Management	1	25	-	25	5	-	5	30	-	30		
Soil and Water Testing	1	44	-	44	16	-	16	60	-	60		
Total	2	69		69	21		21	90		90		
IV Livestock Production and												
Management												
Dairy Management	5	100	10	110	24	10	34	124	20	144		
Animal Nutrition		14	2	16	3	2	5	17	4	21		
Management	1											
Disease Management	2	30	0	30	8	0	8	38	0	38		
Feed & fodder technology	2	26	4	30	8	3	11	34	7	41		
Others (pl specify) - Sheep		16	12	28	8	6	14	24	18	42		
Mangement	2											
Total	12	186	28	214	51	21	72	237	49	286		
V Home Science/Women												
empowerment												
Value addition	4		95	95		23	23		118	118		
Women empowerment	2		41	41		22	22		63	63		
Location specific drudgery]											
reduction technologies	1		23	23		7	7		30	30		
Total	7	0	159	159	0	52	52	0	211	211		
VII Plant Protection												
Integrated Pest Management	6	143	2	145	21	0	21	164	2	166		
Bio-control of pests and]											
diseases	2	61	14	75	10	2	12	71	16	87		
Total	8	204	16	220	31	2	33	235	18	253		
GRAND TOTAL	38	769	203	972	176	75	251	945	278	1223		

Farmers' Training including sponsored training programmes – CONSOLIDATED (On + Off campus)

Thematic area	No. of Participants courses Others SC/ST Grand Total									
	courses			1						
		Male	Female	Total	Male	Female	Total	Male	Female	Total
I Crop Production										
Weed Management	4	130	-	130	30	-	30	160	-	160
Resource Conservation		_								
Technologies	1	40	-	40	5	-	5	45	-	45
Cropping Systems	1	19	-	19	6	-	6	25	-	25
Crop Diversification	1	35	-	35	15	-	15	50	-	50
Micro Irrigation/irrigation	1	25	-	25	5	-	5	30	-	30
Seed production	1	15	-	15	3	-	3	18	-	18
Integrated Crop Management	7	216	4	220	66	-	66	286	4	290
Fodder production	1	45	-	45	5	-	5	50	-	50
Total	17	525	4	529	135	0	135	664	4	668
III Soil Health and Fertility										
Management										
Integrated Nutrient										
Management	1	25	-	25	5	-	5	30	-	30
Production and use of organic										
inputs	3	46	34	80	21	13	34	63	51	114
Management of Problematic		_		_				_		_
soils	1	18	-	18	7	-	7	25	-	25
Micro nutrient deficiency in	1	11	10	21	3	1	4	14	11	25
crops	1	10		10				25		25
Balance use of fertilizers	1	19		19	6		6	25		25
Soil and Water Testing	2	63		63	22	4.4	22	85	63	85
Total	9	182	44	226	64	14	78	242	62	304
IV Livestock Production and										
Management		111	10	124	20	10	20	1.12	20	162
Dairy Management	6	114	10	124	28	10	38	142	20	162
Animal Nutrition	2	14	8	36	11	4	15	39	12	51
Management Discount Management	2	30	0	30	8	0	8	38	0	38
Disease Management			_	72			15		7	
Feed & fodder technology	2	68 22	2	24	12 8	3	11	80		87 35
Sheep Mangement	2					3 6		30	5	42
Integrated Farming Systems	1	16	12	28	8		14	24	18	
Total	18	264	36	314	75	26	101	353	62	415
V Home Science/Women										
empowerment										
Household food security by kitchen gardening and										
nutrition gardening	2		63	63		20	20		83	83
Design and development of			03	03		20	20		83	83
low/minimum cost diet	1		24	24		7	7		31	31
Value addition	4	1	95	95		23	23		118	118
Women empowerment	2	1	95 41	95 41		23	23		63	63
Location specific drudgery		-	41	41					03	03
reduction technologies	1		23	23		7	7		30	30
Women and child care	1	 	23	21		9	9		30	30
Total	11	0	267	267	0	88	88	0	355	355
VII Plant Protection	11	"	207	207	"	00	00	"	333	333
	21	495	1.4	509	69	0	69	564	1.4	E70
Integrated Pest Management	21	495	14	509	69	U	69	564	14	578
Bio-control of pests and	2	80	20	110	1.4	_	10	94	25	129
diseases	3 24	5 75	30	110 619	14	5 5	19		35	
Total CRAND TOTAL		1	44 205		83		88	658	49	707
GRAND TOTAL	79	1546	395	1955	357	133	490	1917	532	2449

Training for Rural Youths including sponsored training programmes (On campus)

	No. of				No. o	of Participa	nts			
Area of training	Courses		General			SC/ST			Grand Tot	al
	Courses	Male	Female	Total	Male	Female	Total	Male	Female	Total
Seed production	1	18	-	18	2	-	2	20	-	20
Production of organic inputs	1	20	5	25	5	-	5	25	5	30
Dairying	3	18		18	4		4	22		22
Any other – Soil Testing	1	18	-	18	2		2	20	0	20
Commercial Floriculture	1	13	0	13	2	0	2	15	0	15
TOTAL	7	87	5	92	15	0	15	102	5	107

Training for Rural Youth including sponsored training programmes (Off campus)

	No. of				No. of	Participants	3			
Area of training	Courses		General			SC/ST			Grand Tota	
	Courses	Male	Female	Total	Male	Female	Total	Male	Female	Total
Production of organic inputs	1	24		24	4		4	28		28
Small scale processing	1		52	52		17	17		69	69
Tailoring and Stitching	2		26	26		7	7		33	33
Rural Crafts	1		19	19		6	6		25	25
Any other – Nutrition Education	3		621	621		122	122		743	743
TOTAL	8	24	718	742	4	152	156	28	870	898

Training for Rural Youths including sponsored training programmes – CONSOLIDATED (On + Off campus)

	No. of				No.	of Participa	nts			
Area of training	No. of Courses		General			SC/ST			Grand Tota	ıl
	Courses	Male	Female	Total	Male	Female	Total	Male	Female	Total
Seed production	1	18	-	18	2	-	2	20	-	20
Production of organic inputs	2	44	5	49	9	-	9	53	5	58
Small scale processing	1		52	52		17	17		69	69
Tailoring and Stitching	2		26	26		7	7		33	33
Rural Crafts	1		19	19		6	6		25	25
Dairying	3	18		18	4		4	22		22
Any other – Soil Testing	1	18	-	18	2		2	18	2	20
Nutrition Education	3		621	621		122	122		743	743
TOTAL	15	111	723	834	19	152	171	130	875	1005

Training programmes for Extension Personnel including sponsored training programmes (on campus)

Area of training	No. of Courses		General		No.	of Particip	ants		Grand Tota	ı
		Male	Female	Total	Male	Female	Total	Male	Female	Total
Productivity enhancement in field crops	3	39	40	79	11	10	21	50	50	100
Integrated Nutrient management	2	40	0	40	5	0	5	45	0	45
Livestock feed and fodder production	4	16	15	31	11	9	20	27	24	51
Any other – Soil Testing	1	20	3	23	0	0	0	23	0	23
TOTAL	10	115	58	173	27	19	46	145	74	219

Training programmes for Extension Personnel including sponsored training programmes (off campus)

	No. of				No.	of Particip	ants			
Area of training	Courses		General			SC/ST		Grand Total		
		Male	Female	Total	Male	Female	Total	Male	Female	Total
Production and use of organic inputs	1	17	18	35	2	3	5	19	21	40
Women and Child care	1	0	176	176	0	37	37	0	213	213
TOTAL	2	17	194	211	2	40	42	19	234	253

Training programmes for Extension Personnel including sponsored training programmes – CONSOLIDATED (On + Off campus)

Area of training	No. of Course				No.	of Particip	ants			
	s	Mal	General Femal	Tota	Mal	SC/ST Femal	Tota	Mal	Grand Tota Femal	Tota
		е	е	1	е	е	1	е	е	- 1
Productivity enhancement in field	3	39	40	79	11	10	21	50	50	100
crops										
Integrated Nutrient management	2	40	-	40	5		5	45		45
Production and use of organic inputs	2	36	18	54	8	3	11	44	21	65
Women and Child care	1		176	176		37	37		213	213
Livestock feed and fodder production	4	16	15	31	11	9	20	27	24	51
TOTAL	12	131	249	380	35	59	94	166	308	474

Table. Sponsored training programmes

	No. of Courses	No. of Participants										
Area of training			General			SC/ST		(Frand Tota	al		
		Male	Female	Total	Male	Female	Total	Male	Female	Total		
Production and value addition												
Ornamental plants – Flower Crops	1	13	0	13	2	0	2	15	0	15		
Others (pl. specify) – Pest and Disease	3											
Management		64	18	82	10	3	13	74	21	95		
in Organic Farming												
Integrated Pest Management	3	61	6	67	15	0	15	76	6	82		
Total	7	138	24	162	27	3	30	165	27	192		

Name of sponsoring agencies involved

Details of vocational training programmes carried out by KVKs for rural youth

	No. of	No. of Participants										
Area of training	Courses	General				SC/ST			Grand Total			
		Male	Female	Total	Male	Female	Total	Male	Female	Total		
Crop production and management												
Commercial floriculture	1	13	0	13	2	0	2	15	-	15		
ASCI	1	18	0	18	2	0	2	20	-	20		
Income generation activities												
Tailoring and Stitching	2		26	26		7	7		33	33		
Rural Crafts	1		19	19		6	6		25	25		
Total	5	31	45	76	4	13	17	35	58	93		

5. Extension Programmes

Activities	No. of programmes	No. of farmers	No. of Extension Personnel	TOTAL
Advisory Services	38	436	48	484
Diagnostic visits	6	42		42
Field Day				
Group discussions	11	284	5	289
Kisan Ghosthi				
Film Show	1	44		44
Self -help groups				
Kisan Mela				
Exhibition	4	3900	20	3920
Scientists' visit to farmers field	25	294	9	303
Plant/animal health camps	8	234		234
Farm Science Club				
Ex-trainees Sammelan				
Farmers' seminar/workshop				
Method Demonstrations	6	98		98
Celebration of important days	4	644	75	719
Special day celebration - Janmabhoomi				2300
Prog.	2	2300		
Exposure visits	4	198	8	206
Others (pl. specify)	24	817	25	842
Total	133	9291	190	9481

Details of other extension programmes

Particulars	Number
Electronic Media (CD./DVD)	1
Extension Literature	2
News paper coverage	67
Popular articles	12
Radio Talks	6
TV Talks	3
Animal health camps (Number of animals treated)	8(532)
Research articles	4
Total	103

Messages sent

MOBILE ADVISORY SERVICES THROUGH MKISAN PORTAL

No of registered farmers: 1565

Types of		Type of messages												
Massagas	Cu	Crop Livestock			Wea	Llanu	Danis				Other enterprise		Total	
Messages	Cro	op	Lives	LOCK	wea	iner	Mark	eung	Aware	ness	enter	prise	10	aı
	No of messages	No of farmers												
Text only	33	2739	2	1565										
Voice only														
Voice &														
Text both														
Total														
Messages	33		2											
Total														
farmers														
Benefitted	2739		1565											

MOBILE ADVISORY SERVICES THROUGH OTHERS

No of registered farmers:

Types of						Ту	pe of m	nessag	es						
Messages	Cro	op	Lives	Livestock		Weather		Marketing		Awareness		Other enterprise		Total	
	No of messages	No of farmers	No of	No of	farmers										
Text only					20	416									
Voice only															
Voice & Text both															
Total															
Messages					20	416									
Total farmers															
Benefitted					20	416									

7. PRODUCTION OF SEED/PLANTING MATERIAL AND BIO-PRODUCTS

Production of seeds by the KVKs (give quantity of seed in quintals only)

	Nome of the	Name of the	Quantity of	Value	Seed supplie	d to farmers	Supplied to
Crop	Name of the crop	variety /hybrid	seed produced (q)	Value (Rs)	Quantity (q)	No of farmers	other agencies (q)
Cereals	paddy	BPT-5204	230.0	842600	230.0		
		NDLR-7	319.0	1169300	319.0		
	Jowar	NJ-2647	8.66	43300	8.66		
		NJ-2446	7.85	47100	7.85		
	Setaria	SIA-3222	12.0	48000	12.0		
		Suryanandi	45.0	180000	45.0		
Oilseeds	Groundnut	Dharani	50.0	200000	50.0		
Pulses	Redgram	ICPH-2740	28.14	281400	28.14		
		PRG-176	79.44	714960	79.44		
		ICPL-87119	32.23	290070	32.23		
		LRG-52	46.86	421740	46.86		
	Bengalgram	NBeG-3	194.46	1555680	194.46		
		NBeG-49	200.81	1606480	200.81		
		NBeG-47	30.30	242400	30.30		
Total			1284.75	7643030	1284.75		

Production of planting materials by the KVKs

Crop	Name of the crop	Name of the variety / hybrid	Number	Value (Rs.)	mat supp	nting terial lied to mers	Supplied to other agencies (No)
					No	No of farmers	
Fodder crop saplings	Hybrid Napier	CO-4, Phule Jaynth, BHN-10	88500	24030.00	85000	13	
Total			88500	24030.00	85000	13	

Production of Bio-Products

Bio Products	Name of the bio-	Quantity	Value (Rs.)	Supplied t	o farmers	Supplied to
	product	Kg		kg	No of	other
					farmers	agencies kg
Bio Fertilizers	Vermi compost	196000	1176000-00	196000	166	2
	PSB	302	15,100-00	302		
	Azospirillum	187	9,350-00	187		
	Potash Mobilizing	190	9,500-00	190		
	Bacteria					
Bio-fungicide	Trichoderma viride	390	39,000-00	390		
	Pseudomonas	502	50,200-00	502		
	fluorescens					
Total		197571	1299150-00	197571		

Livestock:

	Name of the	Number	Value		ipplied to farmers	Supplied to other agencies
Particulars of Live stock	breed	Ivamber	(Rs.)	No	No of farmers	(No)
Dairy animals						
Ewes	Nellore Brown	26	163000- 00	26	3	
Ram lambs	Nellore Brown	22	125000- 00	22	8	
Poultry						
Backyard poultry	Rajasri	4006	300450- 00	4006	46	2
Total		4054	588450-00	4054	57	2

8. DETAILS OF SOIL, WATER AND PLANT ANALYSIS

Samples	No. of Samples	No. of Farmers	No. of Villages	Amount realized (Rs.)
Soil	1346	1255	36	164900
Water	36	24	11	3600
Plant	58	3	2	5800
Total	1440	1282	49	1,74,300

9. SCIENTIFIC ADVISORY COMMITTEE

Date of SAC meeting	Number of members attended
06.03.2018	34

Note: please attach the proceedings of sac meeting along with the list of participants

List of participants attended the SAC Meeting:

S.No	Name	Designation
1.	Sri. P.Balaji	Secretary, KVK, Yagantipalle
2.	Dr. M.R. Sreenivasulu	ADR (Rtd.), Banaganapalle.
3.	Sri R.Kothwal	NSC, Production Officer, Nandyal.
4.	Sri G. Anil Kumar	Horticulture Officer, Nandyal
5.	Sri H.M.Raghu Ram	Assist. Director, Kurnool.
6.	Sri B.V.G. Sudha Ramudu	MIDC, APMIP, Kurnool.
7.	Sri G. Venkata Rami Reddy	S.S.C.O. APSSCA, Nandyal.
8.	Sri K. Vishwanath Reddy	ADA(R), Koilkuntla.
9.	Dr. C. Venkata Ramana Varma	AD (AH), Banaganapalle.
10.	Dr. M. Brahmananda Reddy	МАНО
11.	Dr. B. Srikanth Reddy	VAS Yagantipalle
12.	Smt G.V. Raja Rajeswari	Supervisor, ICDS
13.	Sri A. Uma Maheswara Reddy	DDA, Trg., O/o JDA, Kurnool
14.	Sri K. Rama Rao	PD, ATMA, Kurnool.
15.	Smt P. Narasamma	DPM, DRDA, Kurnool.
16.	Sri N. Srinivasulu	FPO, ADM, Velugu.
17.	Dr. R. Vijay Kumar	DRDA, Kurnool.
18.	Dr. N. Saralamma	PS (Plant Path.), RARS, Nandyal.
19.	Sri S. Konda Reddy	Special Officer, SHE&CS
20.	Smt. G. Dhanalakshmi	Programme Coordinator
21.	Sri N. Chinna Obulesu	AEO, Banaganapalle.
22.	Sri D. Narasimhudu	AEO, Banaganapalle
23.	Sri P. Purushotham Reddy	Farmer, Sunkeasula.
24.	Sri B. Sreenivasulu	Farmer.
25.	Sri S. Vijay Bhaskar Reddy	Farmer, Yagantipalle.
26.	Sri M. Veerabhadra Reddy	Farmer, Bethamcherla.
27.	Smt K. Maheswaramma	Farm Women, Yagantipalle.
28.	Smt Y. Rani	Farm Women, Banaganapalle.
29.	Smt B. Rajeswaramma	Farm Women, Yagantipalle.
30.	Sri. M.V.Krishna Reddy	Farmer, Kalugotla
31.	Sri D. Chinnapu Reddy	Farmer, Banaganapalle.
32.	Mr. P. Naga Venkatesh	Farmer, Banaganapalle.
33.	Sri P.B. Hari Krishna	Farmer, Nandavaram.
34.	Smt Y. Padmavathamma	Dairy Farmer, Loddipalle, Orvakal.

10. PUBLICATIONS

Publications in journals

S. No	Authors	Year	Title	Journal
1	A.Krishna Murthy,	2017	Study on performance of	International Journal of
	G.Dhanalakshmi and		different crops under low	Environment, Agriculture
	Kalyan chakravarthy		cost hydroponic fodder	and Biotechnology Vol-
			production system	2,Issue-2 March-April 2017
				pp.951-953
2	A.Krishna Murthy, G.	2018	Production performance	Research Journal of
	Dhanalakshmi and		of graded murrah	Agricultural sciences vol-9,
	Y.G.Prasad		buffaloes on	March 2018 pp.91- 93
			supplementation with	
			hydroponic maize fodder	

Other publications

Other	publications				
S.No	Item	Year	Authors	Title	Publisher
1	Books				
2	Book chapters / manuals				
3	Training manuals				
4	Conference, proceeding papers, popular articles, Bulletins, Short communications	2017	A.Krishna Murthy and G.Dhanalkshmi	Effect of HMF on production performance of graded murrah buffaloes in scarce rain fall zone (Abstract)	Compendium of Abstracts page no.169 of National conference of ISAPM held during 17-19 May 2017 at Srinagar.
		2017	A.Krishna Murthy, G. Dhanalakshmi and Y.G.Prasad	Effect of Hydroponic Maize fodder on production performance in milch buffaloes of scarce rainfall zone	Proceedings volume -2 of 2 nd International conference on Animal nutrition and environment, page no.563-566 held at Khon Kaen, Thailand during 01.11.2017 to 04.11.2017.

2017 A.Krishna Murthy Study on	Souvenir of
performance of	International
different fodder	
crops under low	Expo on
cost green house	e Agriculture and
hydroponic fodd	er Veterinary
production syste	m Sciences:
	Research and
	Technology held
	at Hyderabad
	during 23-25,
	October 2017.
2017 A.Krishna Murthy Care and	Pashu nestam
management of	pp:21-13
rabbits	
2017 A.Krishna Murthy Supplementation	n Pashunestam
of bypass fat to	pp:09
milch buffaloes	
2018 A.Krishna Murthy Preparation of	Pashunestham
balanced ration	pp:10-11
dairy animals usi	ing
mobile app	
5 Technical bulletin/	
Folders	
6 Reports	
7 Others	

6. Training/workshops/seminars etc details attended by KVK staff

Trainings attended in the relevant field of specialization (Mention Title, duration, Institution, Location etc.)

Name of the staff	Title	Duration	Organized by
K.Lakshmipriya	One day workshop On "Food Industry Leader Consortium For Organics & Millets (FILCOM)"Farm To Global Market Linkages"	1day	IIMR, R'Nagar at Hyd in collaboration with Govt.of Karnataka
K.Lakshmipriya	Training programme on "Basic Bakery"	2 days	Nutri tech solutions, Hyd
G. Dhanalakshmi and M. Sudhakar	Foxtail millet + Redgram – Resilient intercropping system for rainfed areas of scarce rainfall zone of Andhra Pradesh	1day	ANGRAU, Guntur

11. DETAILS ON RAIN WATER HARVESTING STRUCTURE AND MICRO-IRRIGATION SYSTEM

Activities conducted								
No. of Training programmes No. of No. of plant materials produced Visit by farmers Visit by officials								
	Demonstration s		(No.)	(No.)				

13. Awards/rewards by KVK and staff

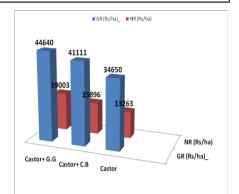
Item of Recognition	Year	Awarding Organization National / International / Professional; Society	Individual/ collaborative
Sri Cherala Bhagya Rajaram Award for Innovative research in LPM	2017	Indian Society of Animal Production management	A. Krishna Murthy (Individual)
Meritorious Extension Scientist Award	2017	Dist.Collecor&Megistrate	K. Lakshmi Priya (Individual)
Meritorious Extension Scientist Award	2017	Dist.Collecor&Megistrate	G. Dhana lakshmi Sr. Scientist & Head

15. Success stories

Success Story on "Castor based intercropping Systems in rainfed situation"

Situation analysis/Problem statement:

In Kurnool district generally Castor is being cultivated in an area of 60533 ha and yields are limited by the amount and distribution of rainfall during monsoon period. Farmers are getting low net returns/ha due to changes in price of the marketable produce and incidence of pest and diseases also increasing year by year due to monocropping.


Plan, Implement and Support:

Organized OFT on different castor based intercropping systems in Rainfed Redsoils, at Yerragudi and Nandavaram Villages of Banaganapalli mandal and provided critical inputs *i.e* seed of base crop and intercrops to the selected farmers with KVK funds.

After assessment of technology for three years, the results of the technology was found successful and considered for large scale adoption in the district. In order to create awareness on intercropping, three trainings were conducted to farmers, Adarsha rythus and extension personnel. The methodology and results were published in daily news papers. Out of 150 trained farmers twenty farmers were selected for demonstration in an area of 20 acres and provided critical inputs like seed. Castor crop and intercrops were sown during the month of last week of July and intercrops were harvested during 1st week of October. During the crop period, five field visits were organized to the farmers and others farmers from different villages to show the new cropping system *i.e* growing of different intercrops in castor.

Castor Based Intercropping Systems

Treatments	Row ratio	Yield (Kg/ha)		LER	Gross returns Rs/ha
		Castor	Inter crop		
Castor+ Greengram	1:2	813	249	1.27	44640-00
Castor+ Cluster bean	1:2	649	1022	1.16	41111-00
Castor	_	990	_	_	34650-00

Outcome:

Intercropping of cluster bean with castor in 1:2 row proportions resulted in the highest LER value of 1.24 coupled with highest yield of castor. This practice was taken well by farmers of Western part of Kurnool district. Awareness on different castor based inter cropping systems was created and nearly 15-20 % of Rainfed farmers were adopting the intercropping systems.

Scope for Up-scaling and Horizontal Spread of Technology:

The sustainable performance of castor based inter cropping systems coupled with market price is attracting the rainfed farmers of Kadapa, Anantapur and Kurnool district. The fore warning given by IMD and messages of scientist about deficient rain fall made farmers to grow intercropping systems as a climate resilient crop.

Impact:

This intercropping technology has spread very quickly not only to the interior pockets of the district but also to other castor growing districts and non-traditional areas because of its unique features like high net returns, comes up well even when drought situations prevail during crop growth period. Farmers are reaping good returns due to this technology.

<u>Success story on "Nutrient Management in Rice based on Soil Test Crop Response equation"</u> Situation analysis/Problem statement:

The agricultural production technologies of-late are closely associated with fertilizer application. Farmers have been using chemical fertilizers from mid fifties as part of soil fertility management and crop production. During the year 1950-51 fertilizer consumption in India was 0.065 million tonnes and by 2008-09 it reached to 24.90 million tonnes (DAC, 2010). The future requirement by 2025 is 35.00 million tonnes. This alarming situation may create lot of problems in soil health, crop production costs, subsidies on chemical fertilizers and environmental degradation.

Rice is one of the major food crops of Kurnool district and is being grown in an area of 1,00,000 ha in both *kharif* and *rabi* seasons. Farmers are resorted to excess and indiscriminate usage of nitrogen (320 kg/ha) and phosphorus (160 kg/ha) as against recommended doses of N (240 kg/ha) and P (80 kg/ha).

Due to indiscriminate usage of phosphorus complex fertilizers, the "Phosphorus build up" in soil has been increased from low to high (as per the soil testing reports of Krishi Vigyan Kendra (KVK), Yagantipalle, bench mark survey of Regional Agricultural Research Station (RARS), Nandyal and Soil testing Laboratory, Yemmiganur in the command areas of Kurnool district). High Phosphorus in soil induces zinc deficiency in crops and increases the cost of production towards "P" nutrient. It is also observed that cost benefit ratio is low i.e. 1:1.5 to 1:1.75 due to increased costs of production towards higher doses of chemical fertilizers and pesticide usage.

Plan, Implement and Support:

- The demonstrations were conducted in eight mandals of Kurnool district namely, Dornipadu,
 Allgadda, Gospadu ,Nandyal,B.Atmakur, Sirivella, Uyyalawada and Yemmiganur. The villages
 have been selected based on PRA conducted on cost of cultivation, cost of fertilizers and soil
 test data of these villages etc. in major crops grown in that village.
- All the farmers of the village along with farm women, and youth were involved in awareness meetings and campaigns on abuse of chemical fertilizers in nutrient management.
- Farmer clubs (Rythu clubs) were formed for follow-up of implementation of the project.
- Then selected farmers, women and youth were trained on soil sampling procedure and nutrient management in Rice before starting of the season at village level. The successful farmers who adopted the STCR recommendation were utilized for capacity building of new farmers.

- Soil samples were collected and analyzed (for estimation of N,P,K,Zn,Fe,Cu and Mn) during summer at soil testing laboratory, KVK, Yagantipalle before implementation of demonstrations.
- Demonstrations conducted in farmer's fields to practically show how these STCR technologies will be effective in nutrient management to reduce cost of chemical fertilizers by their own perception.
- The project proposal has been prepared in consultation with target group of project villages, local Water User Associations (WUAs) and Adharsa Rythus.
- STCR technology replicated in project villages through awareness campaigns, trainings, exposure visits, mass media coverage, field visits, farmer's interaction meetings, field days etc.
- And taken the help of local agriculture extension personnel in the spread and replication of technology by involving them in each activity i.e. trainings, field visits, field days etc.

Output and Outcome:

The average grain yield of paddy under STCR approach was higher (7146 kg ha⁻¹) than the grain yield produced under farmer's practice (6933 kg ha⁻¹) due to balanced nutrient application. The average cost of production over the years was less in STCR trials (Rs.43881/ha) as compared to farmer's practice (Rs.52042 ha⁻¹) and net difference in cost of production was Rs. 8161 ha⁻¹ due to controlled application of chemical fertilizers. Gross and net income were higher in STCR demonstrations (Rs. 109003 ha⁻¹ and Rs.65123 ha⁻¹, respectively) as compared to the farmer's practice (Rs.106139 ha⁻¹ and Rs.54127 ha⁻¹, respectively). It was also observed that an amount of Rs.10996 ha⁻¹ was realized as additional income due to low cost of production and yield increments (3.0%) in demonstrations. Benefit-cost ratio was higher in STCR demonstrations (2.58) as compared to farmers practice (2.11) due to low cost of production and higher gross income.

Table: 1. Average yield obtained in farmer's fields from the year 2007 to 2014.

Year	Yield (Kg/ha)	-	roduction /ha)	Gross returns (Rs/ha)		Net returns (Rs/ha)		Benefit cost ratio	
	FP	STCR	FP	STCR	FP	STCR	FP	STCR	FP	STCR
2007	6782	7246	37552	33526	95006	99572	57454	66046	2.53	2.97
2008	7083	7599	41440	34255	106069	113986	64629	79731	2.56	3.33
2009	6894	7295	39800	33862	103175	108736	63375	74874	2.59	3.21
2010	6019	6236	47140	39312	72225	74828	25086	35516	1.53	1.9

2011	7741	7760	45048	37862	87710	87923	42662	50061	1.95	2.32
2012	6832	6954	61381	48944	136636	139060	75255	90116	2.23	2.84
2013	6823	6829	64704	54439	113663	113767	48959	59328	1.76	2.09
2014	7290	7252	79267	68845	134865	134153	55598	65308	1.70	1.95
Mean	6933	7146	52042	43881	106169	109003	54127	65123	2.11	2.58

Note: FP-Farmer practice STCR- Soil Test Crop Response based application

Impact:

So far STCR based nutrient management was adopted by 3818 farmers of TBLLC and KC canal command villages covering 8946 ha. It was observed that cost reduction on chemical fertilizers is around 7.23 crores and the same amount was saved towards subsidy for Govt. of India which is bearing 50% subsidy on chemical fertilizers. And also got an additional income of 8.68 crores due to adoption of soil test based nutrient management by farmers.

Success Story on "Drip Irrigation System in Jasmine and Vegetable Crops"

Situation analysis/Problem statement:

Earlier farmer used to cultivate Paddy with traditional method in an area of 3 acres through flood irrigation. The yield levels and net returns of the farmer after cultivating Paddy was not desirable.

M. Subramanyam, Yagantipalle (v)

Plan, Implement and Support:

To overcome the above constraint demonstrations and trainings were conducted on cultivation of vegetable crops through drip irrigation and preparation of Jeevamrutham for vegetable crops. Pendal system and small shaded net for nursery raising.

Output and Outcome:

Six to seven types of vegetables including leafy vegetables in 1.5 acres of land with drip irrigation. For Jasmine, weighing and packing of 1.0 kg flowers in the farm and supplying to the flower merchants.

The results revealed that Cultivation of Jasmine through drip irrigation system gave high net returns (Rs.5,96,750/-) with B:C ratio of 1:2.12 from 2012 to 2016. While, cultivation of Vegetable crops through drip irrigation system gave net returns of Rs. 1,59,425/- with BC ratio of 1:2.90.

Economic Performance

	Crop yields (kg/ha) or productivity of the systems as applicable	Expenses incurred (Rs/ha/year)	Net returns (Rs/ha/year)	BC Ratio
Farmers practice (2010-12)	7220	52400/-	47350/-	1:1.90
Innovation (Jasmine) (2012-16)	9375	528250/-	596750/-	1:2.12
Innovation (Vegetables) (2016-18)	2,41,885/-	82460/-	159425 /-	1:2.90

Impact:

With drip irrigation, water use efficiency was improved and spraying of jeevamrutam helped the crop to tolerate water stress and heat. With crop diversification the farmer was able to cultivate more crops under ID situation and realized better income than paddy cultivation.

Animal Husbandry:

Standardization of feeding regimes through ration balancing techniques in different breeds of cattle

Introduction:

Dairy farming is an important livelihood option under Rainfed agriculture to increase farm income by adopting mixed farming systems. Feeding management of dairy animals has to be improved to get full potential production. The traditional system of dairy animal feeding is mostly depending on the agricultural waste/by products like straws, haulms along with limited grazing lands. Balanced feeding of dairy animals with effective utilization of available feed resources improves the production and reproduction efficiency of dairy animals with higher net returns.

Imbalanced feeding leads to excess feeding of some nutrients while others remain deficient. This not only reduces milk production and increases costs per kg milk, but also affects various physiological functions including long term animal health, fertility and productivity. Since many smallholder farmers do not have the necessary skills and knowledge to prepare balanced rations, this can be achieved through providing ration balancing advisory services direct to the farmer.

Description of innovative technology:

Selection of animals

Farmers were selected based on their willingness for implementing the ration balancing programme. Thirty dairy animals (Crossbred Jersey (JX) - 10, Crossbred Holstein Friesian (HFX) - 9 and Ongole - 11) were selected in three villages viz. Meerapuram, Yagantipalle and Nandavaram of Banaganapalle mandal in Kurnool district of AP for the study. Initial data on age, stage of lactation, lactation number, pregnancy status, the animal's daily feed intake, daily milk yield and fat in milk were recorded.

Animal body weight:

The animal's body weight was recorded based on length and heart girth measurements using Shaeffer's formula (Khan H et al 2003).

BW (kg) = ([(heart girth (cm)/2.54)2 x length of the body (cm)/2.54]/300) x 0.4536.

Formulation of balanced ration:

The nutrient requirements and quantity of each ingredient for balanced ration was calculated based on milk yield, milk fat percent, body weight, stage of lactation and pregnancy status before treatment was used to prepare balanced ration with android application developed by Sri Venkateswara Veterinary University, Tirupati.

Feeding of balanced ration to cattle:

The selected animals were fed with the balanced ration as per recommended quantity of Green fodder, Dry fodder and concentrate feed for 30 days in the form of Total Mixed Ration (TMR).

Output:

Body weight gain:

The data revealed that the mean L, G, body weights of JX cows in T_1 and T_2 were 64.7±1.65, 51.7±1.02 and 66.65±1.45, 54.45±0.98 respectively. The mean body weight in T_1 and T_2 were recorded as 264.75±16.24 and 301.588±15.54 respectively. From the data it was found that 13.9% more body weight in JX cows through supplementation of balanced ration.

Mean L, G, body weights of HFX cows in T_1 and T_2 were 66.89±1.36, 56.67±1.6, and 67.56±1.6, 58.89±0.91 respectively. From the data it was found that 9.32% more body weight was recorded in T_2 (356.57±16.8) over T_1 (327.46±17.3).

Similarly the mean L, G, body weights of Ongole cows in T_1 and T_2 were 59.55±1.5, 50.36±1.74 and 61.05±1.22, 53.91±1.62 respectively. The mean body weight in T_1 and T_2 were recorded as 233.51±19.8and 271.66±18.53 respectively. From the data it was found that 16.3% more body weight was recorded in T_2 over T_1 .

The experiment revealed that among the three breeds more body weight gain in 30 days was recorded in Ongole breed (38.2) followed by JX (36.8) and HFX (29.11).

Production performance

The data on milk yield revealed that among the three breeds highest response of 28.85% increase in milk yield was recorded in Ongole followed by Jersey crossbred (14.9%) and HF crossbred (10.3). The increase in milk fat was highest in HF crossbred cows (27.4%) followed by Ongole (26.67%) and Jersey crossbred cows (8.25%). From this study it was observed that the Ongole breeds are having genetic potential of more milk yield and that can be achieved through balanced feeding.

Economic impact:

The net income was improved in all the three breeds due to reduction in cost of feeding as well as improvement in milk yield due to supplementation of required nutrients.

Jersey crossbred cows:

Particulars	Before	After
Total cost of feeding/cow	1693.4	1309.25
Total income/cow	4026.0	5742.0
Net income/cow	2332.6	4432.75
B:C ratio	2.37	4.39

HF crossbred cows:

Particulars	Before	After
Total cost of feeding	1984.2	1647.0
Total income	6378.0	7284.0
Net income	4393.8	5637.0
B:C ratio	3.2	4.42

Ongole cows:

Particulars	Before	After
Total cost of feeding	1032.6	975.25
Total income	2046.0	3630.0
Net income	1013.4	2654.75
B:C ratio	1.98	3.72

Outcome:

- The technology is well accepted by the farmers as it benefitted in improvement of milk yield as well as net income.
- Farmers from other villages have visited the project and replicated the technology in their cattle. Farmers from Hyderabad have also visited the project during the exposure visit conducted by KVK-CRIDA, Rangareddy dist.
- The technology has been taken as on farm trial for implementation in milch buffaloes during 2017-18.
- Five training programmes to the farmers, extension functionaries have conducted to disseminate the technology.

Imparting training on balanced ration

Data collection on body measurements

Preparation of balanced ration in the form of Total Mixed Ration (TMR)

Demonstrating to the other farmers on Balanced Ration Preparation

Home Science:

Establishment of Millet Bakery Unit For Self Sustainability of SHG Women:

Situation analysis/Problem statement:

Millets are important traditional Crops in Andhra Pradesh growing in sizeable area. Millets are high energy, nutritious foods with good amount of dietary fibre and essential minerals compared to other cereals. The added advantage of Millets is the slow digestibility and it is good diet for the diabetics. The consumption of Millets is limited to traditional recipes i.e. roti and sangati. Supplementation of millet based products has become increasingly popular due to nutritional and economic advantages. The decentralized, small scale house hold based economy of food production and food processing is advantageous for SHG Women for Economic Sustainability. Keeping this in view, KVK focused on establishment of small scale food processing units at village level by motivating and involving SHG women in rural areas with locally grown crops.

Smt Y.Rani D/o Sunkanna of Banaganapalle Village of Banaganapalle mandal visited KVK for establishing viable income generating unit for economic sustainability due to family problems she got separated from her husband and staying with parents with two children and she decided not to depend on parents for financial support.

Plan, Implement and Support:

KVK suggested her to establish Millet bakery unit due to high market demand of Millet bakery products. She has attended bakery training programme at KVK and got trained in preparation of various millet based *i.e,* Sorghum, Seteria, Ragi, Bajra sweet and salt cookies, cakes, breads, Buns, multi grain sweet and salt biscuits, Millet biscuits with jaggery, Sugarfree etc. She purchased oven by hiring loan from SHG and started preparation of millet based bakery products. KVK helped in getting the FSSAI registration number. Under KVK she has been send to training at Nutritech bakery solutions, hyd as a part of EDP for strengthening her bakery skills.

Output:

She got expertise in preparation of various millet based bakery products i.e, Cookies, cakes buns and breads etc.

Outcome:

She is preparing 200 kgs /month and earning an net income of Rs.8,500/- month excluding loan amount. She is supplying and selling millet bakery products to Local shops, Super markets, NGOs, Exhibitions, Offices etc.

Impact of Intervention:

This income generating activity helped her in getting name for the brand of millet based bakery products in the district and also this would helped her in getting relief from her marital life problems and able to meet the expenses for her livelihoods. She has also applied for GST no. for further market diversification of the products.

16. IMPACT

Crop Production:

Name of the technology: Varietal evaluation of Redgram Hybrids

Area and Farming situation: In Kurnool district, Redgram being cultivated in an area of 45000 ha under Rainfed situation. The productivity levels are low with ruling varieties and Wilt incidence.

On-farm testing on assessment of Redgram Hybrids *i.e,* ICPH-2740 and ICPH-2671 were organized at Koilakuntla and Banaganapalli mandal in 5 locations each. The results indicated that the hybrid ICPH-2671 has recorded highest Yield (1383 Kg/ha) followed by ICPH-2740 (1236Kg/ha) as compared with local variety ICPI-85063.

Benefit of technology: The results indicated that the hybrid ICPH-2671 has recorded highest Yield (1265 Kg/ha) followed by ICPH-2740- (1198Kg/ha) as compared with local variety ICPI-85063. It was evident that yields were increased from 17 to 23% with introduction of Redgram hybrids through OFTs. The impact was spread to different parts the district. Seed was given for multiplication in different pockets of the district and its performance was encouraging under Rainfed and ID situations. Feedback was given to university and department resulting inclusion of ICPH-2740 under input subsidy programme.

Soil Science:

Impact of soil test based nutrient management for cost reduction on chemical fertilisers

Four hundred and fifty seven frontline demonstrations were organized on "Nutrient Management in Rice based on Soil Test Crop Response equation (STCR)" in farmer's fields covering 1120 ha of 30 villages under irrigated domains of Kurnool district from the year 2007 to 2016. Based on soil test results the farmers of demonstration plots applied lower doses of N-P₂O₅-K₂O (230-19-59 Kg./ha, respectively) as compared to farmer's practice (317-190--65 Kg./ha, respectively) which was reflected in cost of production. The average grain yield of paddy under STCR approach was higher (7146 kg ha⁻¹) than the grain yield under farmer's practice (6933 kg ha⁻¹) due to balanced nutrient application.

Soil test based nutrient management technology was successfully proved in the fields of high phosphorus built up, even without applying phosphoric fertilizers especially complexes, farmers obtained the same yields similar to that of applied ones. In other words, saving costs on fertilizers to the tune of **Rs. 8161 per ha** which is almost 50% of costs on chemical fertilizers. So far *Soil Test Crop*

Response equation based nutrient management was adopted by 3393 farmers of TBLLC and KC canal command villages covering 8198 ha. It was observed that cost reduction on chemical fertilizers was around 6.78 crores (on the basis of reduction in application of fertilizers over 8198 Ha.) and the same amount was saved towards subsidy for Govt. of India which is bearing 50% subsidy on chemical fertilizers. Besides cost reduction, soil health was improved with increased organic carbon content from 0.36 to 0.84% (soil test document) due to practice of green manuring in-situ and judicious use of chemical fertilizers.

Plant Protection:

Impact of Yellow Sticky Traps in reducing the incidence of sucking pests

Incidence of sucking pests in chilli was found high in Kurnool district of Andhra Pradesh due to which farmers are going for indiscriminate use of pesticides for the control. In order to reduce this indiscriminate use of pesticides, KVK conducted group meetings, demonstrations and trainings on keeping yellow sticky traps 20 per acre in order to reduce the pest attack in K.Sunkesula and Sangapatnam villages. Keeping these traps benefitted the farmers in reducing the no. of sprays (3) and cost around Rs. 2100/- per acre. By seeing the results farmers went for large scale adoption of these yellow sticky traps in more than 200 acres.

Demonstrating yellow sticky traps in Chilli

Animal Husbandry:

Low cost hydroponic fodder production for sustainable dairy farming:

More than 300 farmers from A.P. and Telangana have visited the unit at KVK to learn the concept. More than 150 units were established with technical guidance of KVK. Department of Animal husbandry adopted this model and introduced in their subsidy schemes. ATMA Kurnool adopted the same model and spreading the technology through demonstrations. Thirty four units of 25 kg capacity were built and supplied by KVK to the farmers from Andhra Pradesh and Telangana.

16.A. Impact of KVK activities (Not to be restricted for reporting period).

Name of specific	No. of	% of adoption	Change in income (Rs.)		
technology/skill transferred	participants		Before (Rs./Unit)	After (Rs./Unit)	
Blouse Designing	33	84.8	2800/-month	6,500/-/month	
Basic& Advanced tailoring	30	73.3	1500/-/month	3200/-month	

NB: Should be based on actual study, questionnaire/group discussion etc. with ex-participants.

16.C. Details of impact analysis of KVK activities carried out during the reporting period Introduction Of Cotton Knitted hand gloves To reduce Drudgery Of women in harvesting Operations::

Situation analysis:

- Bendi and green fodder harvesting is a tedious job with drudgery involved mainly handled by the farm women.
- For harvesting of Bendi, the farm women wear polythene covers and sometimes cotton cloth around the hand to avoid irritation and itching.
- Though they wear this type of covering materials, they feel difficulty while harvesting
- They failed to have grip for speed harvesting
- ❖ Harvesting of Bendi is a challenging task for farm women
- After bendi harvesting, the farm women attend the household activities with great difficulty especially with food preparation, because the people of this region have the habit of taking Jowar roti as staple food in their daliy diet.
- For the preparation of Jowar rotis requires palm and hand support.

Technology, Implement and Support:

❖ To reduce drudgery and gain income for farm families KVK Introduced Cotton Knitted Hand Gloves under Front Line Demonstrations in five villages for 100 farm women

- ❖ For harvesting of Bendi, the farm women wear knitted hand gloves which protected their
- Drudgery parameters were recorded and it was recorded that harvesting with hand gloves recorded as minimum than farm women practice which was recorded as maximum.

Uptake, spread and Benefits:

With conventional method of harvesting farm women experienced injuries, itching and irritation. The farm women expressed positive attitude towards improved technology. They have realized that the technology has improved their work efficiency and physical health. This has resulted in increased adoption of the protective clothing *i.e,* hand gloves. With this feedback from fellow farmers, farmers and women are coming to KVK to purchase on their own. KVK purchased hand gloves from revolving fund and selling gloves to the farming community especially the demand was found high from farmers of Bengal gram and pomegranate cultivars.

17. LINKAGES

17.A. Functional linkage with different organizations

Name of organization	Nature of linkage		
Acharya N.G. Ranga Agricultural	Technical backstopping for KVK activities		
University, Guntur	 Supply of Breeder seed—Paddy 5204, NDLR-7, NBeG-3 and NBeG-47 		
·	Seed production programme of varieties in farmers field.		
	Capacity building of KVK scientists		
	As member in regional council		
	Sanction of Rs.66.00 lakhs towards:		
Rashtriya Krishi Vikas Yojana	Promotion of mechanization through custom hiring centre.		
(RKVY) through ANGRAU	Strengthening of soil testing lab for more outreach.		
, , , , , , , , , , , , , , , , , , , ,	Establishment of spawn and mushroom production unit for		
	entrepreneurship.		
	Sustaining farmers income through integrated farming system		
	Strengthening of information and communication centre for wider		
	dissemination of technologies-		
Regional Agriculture Research	Seasonal work shops		
Station (RARS)	T&V meetings		
	Procurement of foundation seed		
	Updation of technical know how		
Agriculture Research Station,	Implementation of All India Coordinated Research Project on Agro		
Anantapur	meteorology (ACRPAM) in Kurnool district		
	,		
Central Research Institute for	Capacity building of scientists		
Dry Land Agriculture,	Implementation of NICRA Project(National Innovations on Climate		
Hyderabad	Resilient Agriculture)		
	Implementation of Conservation Agriculture project.		
International Crop Research	Seed Production of Hybrid Pigeon pea ICPH 2740		
Institute for Semiarid			
Tropics(ICRISAT)			
National Institute for	Capacity building of Scientists on innovations in extension and		
Agriculture Extension	marketing		
Management, Hyderabad			
National Bank for Agriculture &	Capacity building of farmers.		
Rural development, Hyderabad	Conducting Farmers Technology Transfer fund project (FTTF project) in		
	soil test based nutrient application in 250 ha covering five villages in K.C		
	canal ayucut.		
Agriculture Technology	Assessment and refinement of the technologies		
Management Agency	Demonstration of the latest technologies		
	Capacity building of farmers, and farm women		
	Organization of exposure visits and interstate training programs to		
	farmers for getting firsthand experience in latest technologies being		
	available with progressive farmers and institutes.		
	Project on Comprehensive Revival of millets in households of Andhra		
	Pradesh.		

Agri Biotech Foundation, Hyderabad.	 Village level seed production programme in Paddy, Bengal gram, Red gram, Groundnut and Foxtail millet. Facilitation in establishment of bio resource centre. Establishment of production facility for Mushrooms, popularization of mushroom production, production of spawn.
Agriculture Skill Council of India(ASCI)	 Skilled based training to farmers and youth in organic farming . Seed growers.
Ministry of Agriculture&	Sanction of Rs.1.50 corers towards:
Cooperation & Farmers Welfare	Establishment of Seed Hub for Pulses (Red gram & Bengal gram) with a
Through ATARI Zone X	target of producing 550, 700 and 1000 Quintals of quality seed during 2016-17, 2017-18 and 2018-19 respectively. The target for 2016-17 was met and the target for 2017-18 is underway and will be met.

17.B. List special programmes undertaken by the KVK and **operational now**, which have been financed by State Govt./Other Agencies

Name of the scheme	Date/ Month of initiation Funding agency		Amount (Rs.)	
Rashtriya Krishi Vikas Yojana (RKVY)		ANGRAU	66,00,000-00	

